Антигенные свойства антител. Свойства антител


Тема 4

Лекция №12

Тема: Формы иммунного ответа. Антитела.

  1. Формы иммунного ответа:

- антителообразование,

- иммунологическую память,

- иммунологическую толерантность,

- гиперчувствительность немедленного типа,

- гиперчувствительность замедленного типа,

- иммунный фагоцитоз и киллерная функция иммунных макрофагов и лимфоцитов.

Различают клеточный и гуморальный иммунный ответ.

Клеточный иммунный ответ происходит с участием Т-лимфоцитов. Эффекторные Т-лимфоциты – Т-киллеры способны уничтожить клетки путем прямой цитотоксичности и путем синтеза лимфокинов, которые участвуют в процессах взаимодействия иммунокомпетентных клеток. В регуляции иммунного ответа участвуют два подтипа Т клеток – Т-хелперы усиливают иммунный ответ, Т-супрессоры, наобарот, угнетают.

Общая схема гуморального иммунного ответа выглядит таким образом:

Антиген (инфекционный агент) фагоцитируется макрофагом. Макрофаг перерабатывает антиген таким образом, что он приобретает способность распознаваться Т-хелперами. При контакте с чужеродным веществом, антигеном макрофаг (фагоцит) активируется и начинает вырабатывать иммуноцитокины, в т. ч. ИЛ-1. Т-хелперы при помощи особого рецептора распознает антиген и выделяет в окружающую среду ИЛ-2. С антигеном связывается соответствующей его рецептору В-клетки.

Для активации В лимфоцитов необходим тройной сигнал: от антигенспецифичного рецептора, фагоцита (ИЛ-1) и Т- хелпера (ИЛ-2). В результате чего образуются клетки, которые синтезируют антитела. Образовавшиеся антитела вступают во взаимодействие с антигеном с образованием комплекса антиген-антитело, которые запускают в действие неспецифические механизмы защитной реакции. Эти комплексы активизируют систему комплемента.

  1. Антитела. Свойства антител.

Антителами называются сывороточные белки (обладающие защитными свойствами) образующиеся в ответ на действие антигена. Они относятся к сывороточным глобулинам и поэтому называются иммуноглобулинами (Ig). Через них реализуется гуморальный тип иммунного ответа.

Важным свойством антител является их специфичность, т.е. способность вступать во взаимодействие с антигеном, аналогичным тому, который индуцировал (вызвал) их образование.

В зависимости от видимых проявлений взаимодействия антитела и антигена различают:

- агглютинины – антитела, вызывающие склеивание микроорганизмов;

- преципитины – антитела, вызывающие осаждение антигена;

- антитоксины – антитела, нейтрализирующие экзотоксины;

- лизины – вызывающие лизис бактерий, спирохет и т.д.;

- опсонины – антитела, усиливающие фагоцитоз и др.

По происхождению антитела делятся на:

• нормальные (анамнестические) антитела, которые обнаруживаются в любом организме как результат бытовой иммунизации, это антитела, появление которых не связанно с инфекцией или искусственной иммунизацией;

• инфекционные антитела, которые накапливаются в организме в период инфекционного заболевания;

• постинфекционные антитела, которые обнаруживаются в организме после перенесенного инфекционного заболевания;

• поствакцинальные антитела, которые возникают после искусственной иммунизации.

Антитела (иммуноглобулины) всегда специфичны антигену, индуцировавшему их образование. Тем не менее противомикробные иммуноглобулины по специфичности делятся на те же группы, что и соответствующие микробные антигены.

• группоспецифические;

• видоспецифические;

• вариантспецифические;

• перекрестнореагирующие.

В настоящее время довольно часто методами биотехнологии и/или генной инженерии получают иммуноглобулины, продуцируемые одним клоном клеток. Они называются моноклональными антителами. Их продуценты - клетки-гибридомы, являющиеся потомками, полученными при скрещивании В-лимфоцита (плазматической клетки) с опухолевой клеткой. От плазматической клетки гибридома наследует способность к синтезу антител, а от опухолевой клетки - способность длительно культивироваться вне организма.

Помимо специфичности одним из основных свойств иммуноглобулинов является их гетерогенность, т. е. неоднородность популяции иммуноглобулинов по генетической детерминированности их образования и по физико-химическому строению.

  1. Строение иммуноглобулинов

По своему химическому строению иммуноглобулины – это гликопротеиды. Иммуноглобулины различаются по структуре, антигенному составу и выполняемым функциям. Структуру и строение молекул иммуноглобулинов установили ученые Эдельман и Портер (1959 г.)

По физико-химическим и антигенным свойствам иммуноглобулины делятся на 5 классов, обозначаемых буквами G, M, А, Е, D.

Электронно - микроскопическое исследование показывает что молекула иммуноглобулина имеет форму Y " игрек" с меняющимся углом между верхними отрезками (рис.4)

Молекула состоит из 4-х полипептидных цепей 2-х типов: тяжелых (Неаvy) или Н-цепей с молекулярной массой 50-55000 и легких (Light) - L-цепей с молекулярной массой 20-25000.

Тяжелые цепи в 2 раза длиннее легких и посередине изогнуты как клюшки. Легкие цепи располагаются кнаружи от верхних отрезков тяжелых цепей, составляющих разворот ''игрек"- молекулы. В единую структуру молекула иммуноглобулина соединена дисульфидными связями вместе перегиба тяжелых цепей и между Н и L-цепями. Обе пары полипептидных цепей иммуноглобулина по порядку расположения в них аминокйслот делятся на 2 части: одна из них - СООН концевая у всех молекул иммуноглобулина имеют одинаковую последовательность аминокислот (константная часть) и другая Nh3 - концевая представляет собой вариабельную часть, в которой расположение аминокислот меняется в зависимости от антигена, вызвавшего образование антител. В вариабельных участках находятся активные центры антител по размерам и конфигурации повторяющие пространственную рельефность детерминантных групп. Каждый активный центр любого иммуноглобулина соответствует детерминантной группе соответствующего антигена как «ключ замку».

Антитела двухвалентны (бивалентны). Это было доказано с помощью фермента папаина. Под влиянием этого фермента игрек-молекулу иммуноглобулина удалось расщепить на - 3 фрагмента. Два верхних Fab-фрагмента, содержащих по одному центру, связывающих антиген и нижний константный Fc-фрагмент (Fragment crystalline), не способный к взаимодействию с антигеном и представляющая постоянную СООН-концевую.

Молекула иммуноглобулина G имеет 2 активных центра. Поскольку строение активных центров иммуноглобулинов одного класса, но разной специфичности неодинаково, то эти молекулы (антитела одного класса, но разной специфичности) являются разными антителами. Эти различия обозначаются как идиотипические различия иммуноглобулинов, или идиотипы.

Молекулы иммуноглобулинов других классов построены по тому же принципу, что и Ig G, т. е. из мономеров, имеющих две тяжелых и две легких цепи, например иммуноглобулины класса М являются пентамерами (построены из 5 таких мономеров), а иммуноглобулины класса А - димерами или тетрамерами.

Количество мономеров, входящих в состав молекулы того или иного класса иммуноглобулина, определяет ее молекулярную массу. Самые тяжелые - это Ig М, самые легкие - Ig G, вследствие чего они и проходят через плаценту. Очевидно, также то, что иммуноглобулины разных классов имеют разное число активных центров: у Ig G их 2, а у Ig М – 10. В связи с этим они способны связать разное число молекул антигена и скорость этого связывания будет различной. Количество активных центров определяет валентность антител. Следовательно Ig G, Ig E, Ig D – двухвалентны, Ig M – 10 валентны, gv Ig A – 2 или 4.

Скорость связывания иммуноглобулинов с антигеном это их авидность. Прочность этой связи определяют как аффинитет.

Аффинность - сила специфического взаимодействия антитела с антигеном. Эта характеристика зависит от пространственного соответствия (комплементарность), структуры антигенсвязывающего центра и антигенной детерминанты. Чем выше их комплементарность, т. е. чем больше подходят друг другу, тем больше образуются межмолекулярных связей, тем выше устойчивость образования иммунного комплекса. Наибольшим аффинитетом обладают моноклональные антитела, наименьшим нормальные антитела.

Авидность - под этим термином понимают прочность связывания антигена с антителом. Эта характеристика определяется аффинностью и числом антигенсвязывающих центров. При равной аффинности наибольшей авидностью обладают Ig М, так как они имеют 10 антигенсвязывающих центров.

Если в молекуле антитела функционирует лишь один активный центр, она может связаться лишь с одной антигенной детерминантой без последующего образования сетевой структуры комплексов антиген-антитело. Такие антитела называются неполными. Они не дают видимых на глаз .реакций, но тормозят реакцию антигена с полными антителами. Неполные антитела играют важную роль в развитии резусконфликта, аутоиммунных заболеваний (коллагенозы) и другие и выявляются с помощью реакции Кумбса (антиглобулиновый тест).

  1. Краткая характеристика иммуноглобулинов

Иммуноглобулины G - это наиболее распространенные антитела, составляют 70-80% всех антител человека. Молекулярная масса 160.000. Константа седиментации 7s. Среднее содержание в сыворотке крови человека 12 г\л. Ig G - мономер, имеет 2 антигенсвязывающих центра - следовательно двухвалентен. Эти антитела активно связывают растворимые антигены бактерий, вирусы, экзотоксины. Имея небольшую молекулярную массу через плаценту, проходят, играют важную роль в защите новорожденного от инфекций первые 3-4 мес. Ig G обладает высокой аффинностью, может быть неполным антителом. (рис.5)

Ig М - это первые антитела, которые появляются при антигенной стимуляции. По количеству составляют 5-15 % всех сывороточных иммуноглобулинов. Обладают крупной молекулой (мол.масса 960.000). Константа седиментации 19s. Среднее содержание в сыворотке 1 г\л. Пентамер, состоит из 5 субъединиц, каждая из которых имеет молекулярную массу близкую к Ig G. Через плаценту от матери к плоду не переходит. Плод синтезирует при внутриутробном инфицировании после 20 недель беременности.

Оказывает действие на Грам - бактерий, активирует фагоцитоз. Ig М обладает высокой авидностью, связывает комплемент, участвует в формировании сывороточного и секреторного гуморального иммунитета. Lg М во много раз активнее Ig G, т. к. имеют 10 активных центров. Большая часть изоагглютининов и нормальных антител относится к Ig М.

Ig А - различают сывороточный и секреторный Ig А.

Сывороточный Ig А составляет около 10-15 % сывороточных иммуноглобулинов. Сывороточный Ig А - мономер, имеет 2 антигенсвязывающих центра т. е. 2-х валентен. молекулярная масса 170.000.

Константа седиментации – 7s. В сыворотке 2.5 г\л. Сывороточный Ig А обезвреживает микробы и их токсины, проникшие в кровь. Ig A обладает высокой аффинностью, может быть неполным антителом, не связывает комплимент, не проходит через плацентарный барьер.

Секреторный Ig А - вырабатывается лимфоидными клетками слизистых оболочек дыхательных путей, полости рта, кишечника, мочевыводящих путей. Чаще существует в форме ди - тримера (т.е. 4 или 6 валентен). Мол. масса 350.000 и более. Константа седиментации 13 s и выше. Содержится в молозиве, слюне, слезной жидкости, слизи кишечника, поте. Играет существенную роль в местном иммунитете. Секреторный Ig А активирует комплемент и стимулирует фагоцитарную реакцию в слизистых оболочках.

Ig Е - представляет важный класс антител, названных реагинами. Молекулярная масса около 190.000, константа седиментации 8s Ig Е - мономер. Составляет около 0,002% всех циркулирующих антител. Ig Е синтезируется зрелыми В-лимфоцитами и плазматическими клетками преимущественно в лимфоидной ткани бронхиального дерева и ЖКТ. Ig Е не связывает комплемент, не проходит через плаценту. Обладает выраженной цитофильностью - тропностью к тучным клеткам и базофилам, участвует в развитии аллергических реакций 1 типа.

Ig D - сведений об этом иммуноглобулине немного. Составляет около 0,2% общего количества циркулирующих в сыворотке иммуноглобулинов. Мономер, молекулярная масса 160.000, константа седиментации-7s. Функция недостаточно изучена. Считают, что обуславливает ряд аутоаллергических реакций при заболеваниях щитовидной железы.

  1. Динамика антителообразования

Динамика образования антител имеет различный характер в зависимости от силы и частоты антигенного воздействия, состояния иммунной системы организма(рис.6)

При первичном и повторном введении антигена динамика антителообразования имеет различный характер и протекает в несколько стадий. Различают индуктивную (латентную) и продуктивную стадии антителообразования. Индуктивная стадия длится от момента антиген попадания антигена в организм до появления антител в крови. Продолжительность индуктивной стадии при первичном иммунном ответе составляет 3-5 суток. Затем наступает продуктивная стадия, в которой различают:

- логарифмическая фаза – когда наблюдается интенсивное поступление синтезированных антител из плазмоцидов в крови и лимфу;

- в стационарной фазе количество специфических антител достигает максимума, продолжительность этой фазы 15-30 суток;

- фаза снижения, когда отмечается постепенное снижение титров антител. Продолжительность этой фазы 1-6 месяцев и более.

Такая динамика антителообразования наблюдается при первичном контакте с антигеном и называется первичным иммунным ответом. Повторный контакт с тем же антигеном формирует вторичный иммунный ответ.

Кривая вторичного иммунного ответа характеризуется укорочением латентной фазы от нескольких часов до 1-2 суток. Логарифмическая фаза отличается более интенсивной динамикой прироста и более высоким титром антител. Стационарная фаза и фаза снижения характерна более затяжная динамика - несколько месяцев и даже лет. Динамику антителообразования при первичном и вторичном иммунном ответе можно изобразить в виде кривой (табл…..).

Явление вторичного иммунного ответа используют при введении вакцин т. к. при повторной встрече с одним, и тем же антигеном организм реагирует более активным более быстрым, формированием иммунного ответа. Это явление называется иммунологической памятью. Иммунологическая память распространяется как на гуморальный, так и на клеточный иммунитет, и сохраняется годами и даже десятилетиями.

Эту форму иммунного ответа осуществляют В-лимфоциты, которые составляют около 1% всех лимфоцитов и называютсяе В-лимфоцитами памяти. Эти клетки не отличаются морфологически от других В-лимфоцитов, но обладают специальным активным геном.

Клетки памяти отличаются более высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни до 10 лет и более.

Иммунологическая толерантность - явление противоположное иммунному ответу и иммунологической памяти.

Иммунологическая толерантность проявляется тем, что на повторное введение антигенов вместо выработки иммунитета организм отвечает ареактивностью, т. е. не отвечает на антиген, толерантен к нему.

Явление иммунологической толерантности было открыто П. Медаваром и М. Гашеком в 1953 г.

Медавар с сотрудниками показали, что если ввести какой-либо антиген в эмбрион, то родившееся животное будет нечувствительно к этому антигену. Антигены, вызывающие иммунологическую толерантность называются толерогенами. Толерогенами могут быть практически все антигены, наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной.

Врожденная толерантность - отсутствие реакции иммунной системы на свои собственные антигены.

Приобретенную толерантность можно создать вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты) или путем введения антигена в эмбриональном периоде.

Механизм толерантности многообразен и до конца не ясен.

Феномен иммунологической толерантности имеет большое практическое значение. Используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и т. д.

studfiles.net

Антигенные свойства антител.

Поиск Лекций

Антитела. Строение, свойства, продукция.

Антигены.

Антигены – вещества генетически чужеродные для того организма куда они поступают, которые попав в организм вызывают разные формы иммунного ответа.

Основные всойства антигенов:

1. Чужеродность при парентеральном введении

2. Антигенность (специфичность)

3. Имунногеннность.

Чужеродность: лучше всего проявляется на белках, антигены всегда органические вещества. В структуре белковых молекул реализуется специфичность работы генома каждого организма, такие вещества как аминокислоты, моносахара, азотистые основания, простые соединения (химические элементы) имеют у всех организмов одинаковую структуру и антигенами не явояются. Есть сильные антигены – микробные экзотоксины, белки сыворотки крови и слабые антигены – желатин, гемоглобин, инсулин (антигенные свойства связаны с низкой молекулярности). Антигенность зависит так же от молекулярной массы. Чем больше различий в аминокислотной последовательности тем выше антигенные свойства. Например такие белки как гистоны, за 1,5 млрд лет в них произошли всего 2 аминокислотных замены.

Полисахариды антигенные свойства слабее, поэтому они, а также липо-поли-сахаридные комплексы проявляют антигенные свойства слабенько, но некоторые например моно, олиго сахара, липиды являются гаптенами т.е. неполноценными антигенами.

Полноценные антигены при введении в организм вызывают иммунный ответ и способны с антителами или Т-лимфоцитами взаимодействовать как in vivo так и in vitro. Им присуще 2 функции:

Ø Вызвать иммунный ответ

Ø Способны вступить с ними в взаимодействие

Неполноценным антигенами присуще только способность вступать в взаимодействие и не способны вызвать образование антител. Гаптены легко соединяются с белками носителями и в таком виде становятся полноценными антигенами при этом их специфичность определяется молекулами гаптена, а белок выполняет роль носителя. Что бы превратить в гаптен в антиген надо присоединить белок.

Липиды, глицерины – являются гаптенами. Нуклеиновые кислоты – слабые антигены.

Антигенные свойства зависят от дозы, от метода введения и от жесткости его структуры (насколько устойчив к протеолитическим ферментам)

Антигенные совйства могут быть усилены если к антигену добавить адъювант – неорганические вещества (гидроксид алюминия, квасцы, липиды; синтетические – полиоксидон; органические – цитоксины). Адъюванты повышают антигенные свойства и усиливают иммунный ответ т.е. имунногеность.

Специфичность: ей обладают поверхностные структуры антигена и носят название активных центров (эпитопов) именно эти группы распознаются макрофагами, В-лимфоцитами и является активными центрами антигена. Количество этих групп разнообразное. Активные центры антигена определяют силу связи между антигеном и антителом т.е. определяю последнюю стадию иммунного ответа.

Среди гаптенов различают полугаптены – неорганические радикалы (йод, бром, азот, -ОН), которые присоединяясь к белковой молекуле могут изменять специфичность и они вызывают выработку антител, которые и располагаются на поверхности полного белкового антигена.

Проантигены – гаптены, которые соединяются с белками организма при введении парентерально и сенсибилизировать такой организм как аутоантиген. В качестве проантигена может выступить любой лекарственные препарат.

Классификация антигенов.

Ø Видоспецифические

Ø Типоспецифически

Ø Группоспецифические

Ø Общие антигены

Ø Гетероантигены

Микробные антигены

Сосредоточены в клеточной стенке: белки определяют группу О-соматически антигенов (термостабилен) может иметь липополисахаридную природу, поверхносные белки группу К-антигенов, типоспецифичные. Жгутики – Н-антигены это белок флагелин (термолябилен). Экзотоксины так же антигены, эксоферменты (плазмокоагулаза).

Например: E. Coli О111, К56 (род, вид, тип (111,56) – серовар, типоспецифический антиген). S. Typhy О9 (т.е. относится к группе Д). Есть общие антигены внутри семейства, но всегда есть видовые и сероварные антигены изучая антигенную структуру можно идентифицировать бактерии.

Гетероантигены: общие антигены между бактериями и другими биологическими объектами например: человек – сифилитическая трепонема. Второе их название перекреснореагирующие антигены (ПРА) способны реагировать с антителами поэтому антитела на трепонему могут реагировать с тканями и запускать аутоиммунный процесс.

Антигены вирусов.

Нуклеиновая кислота вместе с капсидными белками у простых вирусов. У сложных вирусов есть еще суперкапсид и на поверхности этой оболочки есть липротеиновые антигены (обозначаются цифрами). Например у гриппа: имеет нейроамидазный антиген (около 5), Н1, Н5(птичий грипп). С помощью них вирус адсорбируется на поверхности эритроцитов и склеивает их, нейроамидазный адсорбируется на мембранах клеткок. По антигенным свойствам можно идентифицировать вирусы.

Антигены тела человека.

Изоантигены (индивидуальные антигены). Представлены на различных органах.

Эритроцитарная система (АВО, Rh) – по ним делят на группы крови и резусы. Их более 70, но практически используются только АВО и резус.

В большей степени изоантигены изучены на лейкоцитах т. о образуется система гистсовместимости по индивидуальным тканевым антигенам (Мaior Нistocompa Tibiliti Сomplex) или НLA. Совместимость по этой системе проводится в случае пересадки органов и костного мозга, Эти антигене генетически детерминированы, сцепеленны с генами иммунного ответа. МНТС разделены на 3 класса:

1. Предствалены на поверхности всех ядер клеток нашего организма

2. Представлены на поверхности имунокомпетентнык клеток

3. Представлены на белках системы комплемента

Функции:

1 класс позволяет разделять свое от чужого, 2 класс участвует в двойном распознавании антигена, могут усилить иммунные ответ, заставить клетку дифференцироваться.

Врачи еще различают опухолеспецифические антигены, эмбриональные антигены, маркерные опухолевые, трансплантационные антигены (сингенные – собственные, однояйцевых близнецов, чистых линий животных, аллогенные – взяты от другого человека, другой линии животных, ксеногенные – взятые от другого биологического вида(например человеку лимфоциты свиней)).

 

Антитела.

Имуноглобудины, γ-глобулины – синонимы антител.

Антитела – специфические белки синтезируемые в организме в ответ на поступление антигена находятся в сыворотке крови и находятся в γ-глобулиной фракции сыворотки крови. Составляют основу гуморального иммунитета. Приблизительно в сыворотки крови человека γ-глобулиновая фракция составляет 20%.

Строение антител: молекула Ig- состоит из двух идентичных, тяжелых цепей Н и 2-х легких L цепей которые соединяются между собой дисульфидными мостиками. Структурной единицей Ig являетмся мономер состоящий из 2 Н и 2 L цепей. Среди него различают вариабельную часть и константную часть. Вариабельная часть Н и L цепей составляют фаг-фрагмент к которому присоединяется антиген (2 штуки) специфичность этой связи носит название аффиности антитела, скорость и прочность связи определяет авидность. Константный фрагмен – отвечает за неспецифические функции антител: связь с комплементом, связь с фагоцитами, тучными клетками.

В зависимости от структуры строение, формы Н-цепей различают 5 классов Ig:

1. IgM -

2. IgG

3. IgA

4. IgE

5. IgD

  IgM IgG IgA IgE IgD
Молекулярная масса 160-400    
Количество мономеров    
Валентность    
Прохождение ч/плаценту - + ±    
Константа седиментации 19S 7S      
Функции Участвуют в агглютинации, преципитации, активации, опсанизации, антибактериальная активность, нейтрализуют токсины То же        

IgA – бывают 2 варианта: сывороточные и секреторные, продуцируются клетками эпителия кишечника. Секторные это диметры есть компонент который защищает его от секретов пищеварительного сока, слюны, они обеспечивают местный иммунитет слизистых оболочек.

IgE – свидетели аллергических реакций, в сыворотке крови появляются при аллергических реакциях немедленного типа, взаимодействуют с тучными клетками и заставляют продуцировать гистамин, что определяет аллергии немедленного типа (крапивница, анафилаксия).

IgD – мономеры, склонны к агрегации, продуцируются зрелыми В-лимфоцитами к 10 годам появляются при аутоиммунной патологии, беременности.

Свойства антител.

Нормальные антитела – естественные антитела которые присутствуют в любой сыворотке человека, животного и дают базальный уровень иммуноглобулинов: антиэритроцитарные антитела, противобактериальные. Эти антитела постоянны в организме, дополнительной антигенной стимуляции не требуется все перечисленные микроорганизмы постоянно контактируются с человеком.

Моноклональные антитела – это антитела к одной антигенной детерминанте они принадлежат к одному классу, подклассу аллотипу имеют один вид легких цепей, имеют одинаковую аффиность поскольку моноклональные антитела образуются одним клоном В-лимфоцитов и поэтому эти антитела гомогенные, когда иммунизируют человека вакцинным препаратов или после болезни в сыворотке человека появляется антитела к разным антигенным детерминантам. И поэтому иммунные сыворотки от переболевших или иммунизированных гетерогенны. Гетерогенность антител снижает чувствительность методов индикации антигенов с помощью сывороток.

Получают моноклональные тела методом in vivo гибридом разработанным в 1975 году Келлером и Мильштейном (Нобелевская премия). Суть получение антител этим методом состоит в следующем:

1. этап: Получение гибридому и отбор клеток. Мышь иммунизируют антигеном, после иммунизации берут селезенку и получают из нее лимфоциты, которые должны превращаться в плазматическую клетку продуцирующие антитела. Другую мышь (Balb C) с плазмоцитомой (опухолевый процесс поражающий селезенку) в органах этой мыши есть опухолевая плазматическая клетка, которую совмещают с нормальными клетками от здоровой мыши в присутствии полиэтиленгликоля, которые помогают гибридизации. Получившиеся клетки отбирают на селективной среде – ГАТ (гипоксантин – аминоптерин – тинидин) в этой среде погибнут нормальные клетки, опухолевые клетки, а гибридомные выживут и будут расти.

2. этап: Отбор клеток нужных продуцентов. Проводится методом тестирования на искомые антитела. Делают с помощью иммунологических реакций ИФА, РИФ, пластинки с имобилизированным антигеном

3. этап: Клонирование гибридомных клеток много раз на специальной питательной среде.

4. этап: Консервирование – сипользуют низкие температуры

5. этап: Получение моноклональных антител. Гибридломные клетки вводят внутрибрюшинно белым мышам (здоровым) они там размножаются у них возникает асцит в котором содержится много моноклональных антител.

Второй метод: размножение гибридомных антител на культуре и они там продуцируют антитела (in vitro).

Моноклональные антитела получены к антигенным детерминантам Т (СД4) и В-лимфоцитов. МКА используются для идентификации Т и В – лимфоцитов и их субпопуляции, которые определяют активность, продукцию лимфокина. МКА получены для идентификации цитокинов в сыворотке, ВИЧ-вируса, для диагностики определяют антигенные детерминанты вещества. МКА используют в онкологии для терапии опухолевых заболеваний. МКА для таксономических идентификаций.

В последнии годы гибридому культивируют с помощью аппарата цитостат куда подается питательная среда и гибридомность поддерживается автоматически → большое количество генетически гомогенных антител.

Полные и неполные антитела: Деление основано на способности полных антител образовывать в результате иммунологической реакции с антигеном комплекс видимый невооруженным глазом (агглютинация) при преципитации этот комплекс называется преципитат (т.е. аморфный осадок). У полного антитела имеетя две и более валентности (активных центров) и взаимодействия с антителом образует решетку. (IgM, IgG, IgA) Неполное антитело моновалентное и взаимодействуя с антителом связывает одну детерминанту и этот комплекс мы не видим поэтому они еще называются блокирующими антителами. Поэтому для выявления неполных антител требуется специальный метод Кумбса при котором используются вторичные антитела, и оно садится на первичное антитело и тогда этот антиген свяжется в макроагрегат.

Комплимент связывающие несвязывающие антитела. Связывающие взаимодействуют с комплментом с помощью FС-фрагменту и дальше идет реакция связывания комплемента. Несвязывающие не взамодействуют с комплементом.

Антитела абзимы – абзимология (антитела ферменты), катализаторы биохимических процессов. У мноих Ig есть ферментативная активность (протеазная, нуклеазная). Есть антитела ферменты и на другие разновидности веществ. Считают что эти свойства антител очень древние.

Бифункциональные антитела: обладают две специфичности фаг-фрагментов т.е могут присоединять два антигена разной специфичности.

Имунотоксины: гибрид молекулы Ig с токсином. Эти антитела получают методом биотехнологии. Присоединяя к Ig молекулу токсина такое антитело способно направленно доставить токсин к клетке мишени (опухолевой) и нарушить метаболизм этой клетки. Используют в лечении опухолей, аллергий.

Антигенные свойства антител.

Само антитело любой специфичности наделен антигенными свойствами и поэтому в молекуле Ig различают четыре антигенных детерминанты: видовые, изотипические, аллотипичесике и идеотипические.

Видовые: характерны для Ig всех особей. Определяются строением легких и тяжелых цепей.

Изотипические: являются групповыми и служат для дифференцировки иммуноглобулина на 5 классов (M, G, A, D, E) и множества подклассов G и А имеет подклассы. Локализуются детерминанты в тяжелых цепях.

Аллотипические: Являются индивидуальными присущими конкретному оргназму, они располагаются в легких и тяжелых полипептидных цепях и на основании их можно различить особи одного вида.

Идеотипические: располагаются в активных центрах. Обнаружение этого антитела послужило основание для создания теории антиидеотипа, которая лежит в основе регуляции биосинтеза антител. Этот антиген обладает регуляторными свойствами (когда идеотипов много→много антиидеотипа→прекращается синтез антител).

Основные свойства антител можно разделить на прямые эффекты (эффеторные свойства) т.е. способно нейтрализовать антиген, оказать ферментативное действие, IG является маркером антигена, эффекторные свойства направлены на участие или кооперативное действие антитела с фагоцитами, комплементами, с помощью этих взаимодействия и осуществляется прямое действие.

Непрямое действие связано с активацией комплемента, индукцией иммунного фагоцитоза и антителозависимой клеточная цито токсичность.

Генетика антител.

Образованию антител присуще своеобразное гентичекое кодирование. Структура кодируется ни одним геном, а большим числом генов эти гены находятся в фрагментарном состоянии которые располагаются в трех различных хромосомах и располагаются независимо. Молекулярно-генетическая теория происхождениея разработана Тонегавой 1983 году и основа этой теории состоят в следующем:

1. Лимфогенез в нашем организме идет непрерывно

2. В пределах одного оргнаизма существует или может возникнуть В-лимфоциты специфичные практически к любому антигену

3. Дифференцировка В-лимфоцитов возникает в результате первичного иммунного ответа, идет непреавно с размножением и одновременно дифференцировка сопроваждается перестройками в впередалх имуноглобулиовых генов этот процесс сопровождается последовательной сменой классов иммуноглобулинов. На первом этаме образуются IgМ, а потом на позних стадиях этот же В-лимфоцит продуцирует IgG этой же специфичности. Попутно идут точечные перестройки иммуноглобулина что привдит к тому что на повенрхности иммуноглобулина появляются специфические реценторы. Результат: рекомбинация генов иммунного ответа.

Динамика антитела продукции.

Выделяют латентную фазу: переработка антигена и представление его имунокомпетентной клетке→ пролиферация специфического клона клеток антител. Титры антител не появляются (3-5 дней).

Логарифмическая фаза: увеличение В-лимфоцитов которые пролиферируют и распространяют антитела (титр растет, 7 - 9 день).

Стационарная фаза максимальный уровень антител в крови 20-30 день

Первичный иммунные ответ. Снижение антител 2-4 месяц, образование иммунного ответа, образование IgM, D. В конце может быть в сыворотке Ig G, A т к наступает переключение синтеза в следствии образуются клоны В-лимфоцитов специфичные для конкретного антигена и образуются В-лимфоцита памяти. Повторный контакт приведет к образованию вторичного иммунного ответа.

Вторичный иммунный ответ: коротка латентная фаза равна я1-2 дням, высокий титр антител только IgG. В-лимфоцитов память будет больше.

Это используется в практике: вакцинация которая включает первичную вакцинацию и обязательную ревакцинацию. Получение иммунных сывороток.

Иммунологическая память – способность организма при повторной встрече с антигеном реагировать более активно (вторичный иммунный ответ), сохраняется годами за счет образование В-лимфоцита. ИП характрна как и для гуморального так и для клеточного иммунитета. Эти используется в вакцинации.

Иммунологическая толерантность (ареактивность) – форма иммунного ответа противоположная имуногогической памяти, отсутствие иммунного ответа на повторную встречу с антигеном. Бывает врожденной (отсутствие иммунной реакции на собственные антигены), приобретенной (после введения препаратов имунодепресантов снижающих иммунный ответ или введение в эмбриональном периоде, когда иммунная система еще не функционирует. ИТ была открыта в 1953 году Медаваром и Гашеком (Нобелевская премия). Механизм не расшифрован, нос считают связан с :

1. Элиминацией клонов лимфоидных клеток реагирующих на антиген. Разрушение клона идет за счет апоптоза.

2. Блокада рецепторов В и Т клеток

3. Быстрое связывание антигена и выведение его из организма.

Антиген который вызывает ИТ – толероген это чаще всего полисахарид, способны сохранятся. Явление ИТ используется для решения таких проблем как пересадка органов и тканей за счет облучение организма, приема имунодепресантов, для лечения аутоиммунных реакций, аллергической патологии и других состояний.

 

poisk-ru.ru

ТЕМА: ОБЩАЯ ХАРАКТЕРИСТИКА АНТИТЕЛ.

Антитела — белки, относящиеся к тому или иному классу иммуноглобули-нов, синтез которых стимулируется после парентерального поступления антигена; антитела обладают способностью специфически взаимодействова-ть с данным антигеном.

Благодаря последнему качеству антитела являются одним из основных специфических факторов иммунитета, направленных именно против той чужеродной субстанции, которая была причиной их возникновения.

Известны пять классов иммуноглобулинов: IgM, IgG, IgA, IgE и IgD.

Суммарное количество иммуноглобулинов в сыворотке крови составляет около 2,5 % (сухой остаток), т. е. более 1/3 всех белков.

Антитела вырабатываются клетками лимфоидных органов, циркулируют в крови и других жидкостях организма. Антитела определенного типа, так называемые секреторные иммуноглобулины класса А, выходят за пределы слизистых оболочек в просвет кишечника, дыхательных путей и др., являясь «первой линией обороны» организма.

Антитело (АТ) — гликопротеин, относящийся к классу Ig. АТ специфически взаимодействует с комплементарным Аг. АТ существуют в миллионах разновидностей, и каждая молекула имеет уникальный участок связывания антигенной детерминанты. АТ синтезируют плазматические клетки в ходе гуморального иммунного ответа. Ig образуют один из основных классов белков крови, составляя 20% массы белка плазмы. Гены кодирующие синтез известных классов Ig, расположены в хромосомах 2, 14 и 22.

Структура. Молекулы иммуноглобулинов разных классов построены из одних и тех же мономеров, имеющих по две тяжелых и по две легких цепи.

Молекула Ig состоит из двух лёгких цепей (L-цепи) и двух тяжёлых цепей (Н-цепи). В цепях различают вариабельную область (V-область) в N-концевой части и постоянную, или константную область (С-область). V-область у разных АТ варьирует. V-области L- и Н-цепей образуют Аг - связывающий центр, или Fab-фрагмент. Константная область молекулы Ig имеет Fс - фрагмент.

Аг- связывающий центр образован вариабельными областями L- и Н-цепей. С Аг-связывающим центром взаимодействует антигенная детерминанта (эпитоп) иммуногена.

Fс - фрагмент определяет специфичность связывания молекулы Ig с клетками-эффекторами (например, макрофаги, полиморфно-ядерные лейкоциты, тучные клетки), несущими на своей поверхности рецепторы Fс-фрагмента.

 

рис. 1. Структура иммуноглобулина. Молекула состоит из двух идентичных тяжёлых (Н) и двух идентичных лёгких (L) цепей. N-концевые области L- и Н-цепей образуют два Аг-связывающих центра. Fс-фрагмент молекулы взаимодействует со своим рецептором в мембране различных типов клеток (макрофаг, нейтрофил, тучная клетка).

 

ДИНАМИКА ПРОДУКЦИИ АНТИТЕЛ.

 

Рис. 2. Локализация антигена в лимфатическом узле.

Накопление антигена (АГ) в тех или иных органах лимфо - миелоидного комплекса зависит от способа проникновения АГ в организм.

1. При попадании непосредственно в кровь АГ в значительных количествах концентрируется в селезенке.

2. При подкожном введении АГ достигает ближайшие лимфатические узлы через кровеносные и лимфатические сосуды. На рисунке показан способ до­ставки и локализации АГ в лимфатическом узле. В крови или лимфе АГ может оставаться нативным или вступать в специфическое взаимодействие либо с лимфоцитами, имеющими соответсвующие антигенсвязывающие рецепторы (вероятнее всего это В-клетки), либо с IgМ, постоянно секре-тируемым В-клетками, либо с IgG при условии предсуществования его в организме. Кроме того, возможен захват АГ присутствующими в жидкостях моноцитами (МЦ). Ток жидкостей доставляет АГ в синусы маргинальной зоны. Оттуда он мигрирует в медуллярную зону, где оказывается захва-ченным макрофагами.

Через 1—2 ч после введения концентрация АГ в медуллярной зоне достигает максимума. Помимо медуллярной зоны, АГ обнаруживается в макрофагах фолликулов коркового слоя. Если антиген мигрирует в комплексе с иммуно-глобулином, то он накапливается в значительном количестве в дендритных клетках фолликулов. Некоторые АГ остаются в течение месяца и более связанными с данными клеточными формами, что имеет определенное значение для провокации вторичного иммунного ответа. Макрофаги, захватившие АГ, окружены плотным кольцом лимфоцитов, что создает реальные условия для запуска иммунных процессов.

Классы Ig. В зависимости от структуры Н-цепей, выделено пять разных классов (изотипов) АТ — Ig А, Ig D, Ig Е, Ig G и Ig М.

Разные классы иммуноглобулинов отличаются друг от друга биологическими свойствами. Прежде всего это относится к их способности связывать гомологичные антигены. В данной реакции у мономеров IgD и IgЕ участвуют два антигенсвязывающих участка (активных центра), обусловливающих бивалентность антител. При этом каждый активный центр связывается с одним из эпитопов поливалентного антигена, образуя сетевую структуру, которая выпадает в осадок. Наряду с бивалентными существуют моновалентные антитела, у которых функционирует лишь один из двух активных центров, способный связаться лишь с единичной антигенной детерминантой без последующего образования сетевой структуры иммунных комплексов. Такие антитела называются неполными, они выявляются в сыворотке крови с помощью реакции Кумбса.

1. IgG — преобладающий класс АТ, производится в больших количествах при иммунном (вторичном) ответе и защищает ткани от бактерий, вирусов и токсинов. Ig G усиливают фагоцитоз посредством опсонизации. Из всех Ig

только IgG способны проходить через плацентарный барьер.

Иммуноглобулины класса G (Ig G) составляют около 80% сывороточных иммуноглобулинов (в среднем 12 г/л), с молекулярной массой 160000 и скоростью седиментации 7S. Они образуются на высоте первичного иммунного ответа и при повторном введении антигена (вторичный ответ).

 

Рис. 3. Пространственная организация V-домена Н-цепи IgG1 человека (миеломного белка New).

Методами рентгеноструктурного анализа установлена пространственная организация V -домена. Упаковка в глобулу полипептида, составляющего V -домен, происходит так, что гипервариабельные участки оказываются в непосредственной близости друг от друга со стороны «внешнего» NН2-конца. Желтые сегменты — участки цепи, вступающие в контактное взаимодействие с VL-доменом при образовании антигенсвязывающей области активного центра.

Ig G обладают достаточно высокой авидностью, т. е. сравнительно высокой скоростью связывания с антигеном, особенно бактериальной природы. При связывании активных центров Ig G с эпитопами антигена в области его Fс-фрагмента обнажается участок, ответственный за фиксацию первой фракции системы комплемента, с последующей активацией системы комплемента по классическому пути. Этим обусловливается способность Ig G участвовать в защитных реакциях бактериолиза. Ig G является единственным классом антител, проникающим через плаценту в организм плода. Через некоторое время после рождения ребёнка содержание его в сыворотке крови падает и достигает минимальной концентрации к 3-4 мес., после чего начинает возрастать за счет накопления собственных Ig G, достигая нормы к 7 годам. Из всех классов Ig в организме больше всего синтезируется Ig G. Около 48% Ig G содержится в тканевой жидкости, в которую он диффундирует из крови. Ig G так же как Ig других классов, подвергается катаболическому распаду, который происходит в печени, макрофагах, воспалительном очаге под действием протеиназ.

2. IgM — пентамер, пять субъединиц соединены между собой дисульфидными связями. Единственная , J-цепь, связанная дисульфидными мостиками с тяжёлыми цепями, инициирует сборку пентамера. Ig М — первый класс АТ, продуцируемых развивающимися В-клетками при первичном попадании Аг в организм. Большая молекула Ig М легко акти-вирует комплемент и служит как опсонин при фагоцитозе. Многие АТ против грамотрицательных бактерий относятся к Ig М.

Иммуноглобулины класса М (Ig М) первыми начинают синтезироваться в организме плода и первыми появляются в сыворотке крови после иммуни-зации людей большинством антигенов. Они составляют около 13% сыворо-точных иммуноглобулинов при средней концентрации 1 г/л. По молеку-лярной массе они значительно превосходят все другие классы иммуно-глобулинов Это связано с тем, что Ig М являются пентамерами, т. е. состоят из 5 субъединиц, каждая из которых имеет молекулярную массу, близкую к Ig G. К Ig М принадлежит большая часть нормальных антител — изогемаг-глютининов, которые присутствуют в сыворотке крови в соответствии с принадлежностью людей к определенным группам крови. Эти аллоти-пические варианты Ig М играют важную роль при переливании крови. Они не проходят через плаценту и обладают наиболее высокой авидностью. При взаимодействии с антигенами in vitro вызывают их агглютинацию, преци-питацию или связывание комплемента. В последнем случае активация системы комплемента ведет к лизису корпускулярных антигенов.

 

Рис. 4. Структура иммуноглобулина М пентамера.

3. Ig А — основной класс АТ в секретах (слюна, слёзы, молоко). Выделяется на поверхность слизистых оболочек, где и взаимодействует с Аг. Следовательно, Ig А участвует в защитной функции организма, укрепляя барьер в слизистой оболочке пищеварительного тракта, дыхательных, половых и мочевыделительных путей. Молекула Ig А в составе секрета — димер, содержащий одну, J-цепь и дополнительную полипептидную цепь, называемую секреторным компонентом. Этот компонент синтезирует эпителиальная клетка, на поверхность которой и выделяется димер. Вероятно, секреторный компонент участвует не только в связывании молекул Ig А и их внутриклеточном транспорте, но и в защите молекулы Ig А от переваривания протеолитическими ферментами секретов.

Иммуноглобулины класса А (Ig А) встречаются в сыворотке крови и в секре-тах на поверхности слизистых оболочек. В сыворотке крови присутствуют мономеры Ig А с константой седиментации 7S в концентрации 2,5 г/л. Данный уровень достигается к 10 годам жизни ребенка. Сывороточный Ig А синтезируется в плазматических клетках селезенки, лимфатических узлов и слизистых оболочек. Они не агглютинируют и не преципитируют антигены, не способны активировать комплемент по классическому пути, вследствие чего не лизируют антигены.

 

Рис.5. Структура иммуноглобулина Ig А (секреторного) - димера. Для сравнения — структура иммуноглобулина IgG.

Секреторные иммуноглобулины класса Ig А /S Ig À/отличаются от сыво-роточных наличием секреторного компонента, связанного с 2 или 3 моно-мерами иммуноглобулина А. Секреторный компонент является (β -глобу-лином с молекулярной массой 71000 D. Он синтезируется клетками секре-торного эпителия и может функционировать в качестве их рецептора, а к IgА присоединяется при прохождении последнего через эпителиальные клетки.

 

Рис. 6. Синтез и транспорт секреторного Ig А.

Ig А обычно циркулирует в мономерной (7S) или димерной (9S) форме; встречаются и более крупные объединения — три- и тетрамеры. Ig А.— основной представитель иммуноглобулинов в секретах организма (слюна, секрет кишечника, слезы, молозиво). Проникая в эпителиальные клетки, Ig А образует комплекс с «секреторным фактором», который, очевидно, защищает его от действия гидролитических ферментов и помогает выходу в субэпителиальное пространство. Хотя Ig А не связывает комплемент и в силу этого не обладает бактерицидной активностью, очевидно, он играет важную роль в нейтрализации бактериальных токсинов и локализации вирусов, препятствует их проникновению в организм.

Секреторные IgА играют существенную роль в местном иммунитете, пос-кольку препятствуют адгезии микроорганизмов на эпителиальных клетках слизистых оболочек рта, кишечника, респираторных и мочевыводящих путей. Вместе с тем SIgÀ в агрегированной форме активирует комплемент по альтернативному пути, что приводит к стимуляции местной фагоцитарной зашиты. Секреторные IgÀ препятствуют адсорбции и репродукции вирусов в эпителиальных клетках слизистой оболочки, например при аденовирусной инфекции, полиомиелите, кори. Около 40 % общего IgÀ содержится в крови.

4. Ig Е специфически взаимодействует с тучными клетками и базофильными лейкоцитами. Эти клетки содержат сосредоточенные в гранулах биологически активные амины. Выделение этих веществ из клетки (дегрануляция) вызывает резкое расширение просвета венул и увеличение проницаемости их стенок. Подобную картину можно наблюдать при аллергических реакциях. Иммуноглобулины класса Е (IgЕ). В норме содержатся в крови в концентрации 0.00025 г/л. Он синтезируется плазматическими клетками в бронхиальных и перитонеальных лимфатических узлах, в слизистой оболочке желудочно-кишечного тракта со скоростью 0.02 мг/кг массы в день. Иммуноглобулины класса Е называют также реагинами, поскольку они принимают участие в анафилактических реакциях, обладая выраженной цитофильностью.

5. Ig D. Его биологическая не установлена, присутствует в сывороткев крайне низких концентрациях, появляется на поверхности развивающихся В-лимфоцитов.

Иммуноглобулины класса D (IgD). До 75% IgD содержится в крови, достигая концентрации 0,03 г/л. Он имеет молекулярную массу 160 000 и скорость седиментации около 7S. IgD не проходит через плаценту и не связывает комплемент. До сих пор неясно, какие функции выполняет. Полагают, что он является одним из рецепторов предшественников В-лимфоцитов.

Похожие статьи:

poznayka.org

Антигенные свойства антител. — МегаЛекции

Антитела. Строение, свойства, продукция.

Антигены.

Антигены – вещества генетически чужеродные для того организма куда они поступают, которые попав в организм вызывают разные формы иммунного ответа.

Основные всойства антигенов:

1. Чужеродность при парентеральном введении

2. Антигенность (специфичность)

3. Имунногеннность.

Чужеродность: лучше всего проявляется на белках, антигены всегда органические вещества. В структуре белковых молекул реализуется специфичность работы генома каждого организма, такие вещества как аминокислоты, моносахара, азотистые основания, простые соединения (химические элементы) имеют у всех организмов одинаковую структуру и антигенами не явояются. Есть сильные антигены – микробные экзотоксины, белки сыворотки крови и слабые антигены – желатин, гемоглобин, инсулин (антигенные свойства связаны с низкой молекулярности). Антигенность зависит так же от молекулярной массы. Чем больше различий в аминокислотной последовательности тем выше антигенные свойства. Например такие белки как гистоны, за 1,5 млрд лет в них произошли всего 2 аминокислотных замены.

Полисахариды антигенные свойства слабее, поэтому они, а также липо-поли-сахаридные комплексы проявляют антигенные свойства слабенько, но некоторые например моно, олиго сахара, липиды являются гаптенами т.е. неполноценными антигенами.

Полноценные антигены при введении в организм вызывают иммунный ответ и способны с антителами или Т-лимфоцитами взаимодействовать как in vivo так и in vitro. Им присуще 2 функции:

Ø Вызвать иммунный ответ

Ø Способны вступить с ними в взаимодействие

Неполноценным антигенами присуще только способность вступать в взаимодействие и не способны вызвать образование антител. Гаптены легко соединяются с белками носителями и в таком виде становятся полноценными антигенами при этом их специфичность определяется молекулами гаптена, а белок выполняет роль носителя. Что бы превратить в гаптен в антиген надо присоединить белок.

Липиды, глицерины – являются гаптенами. Нуклеиновые кислоты – слабые антигены.

Антигенные свойства зависят от дозы, от метода введения и от жесткости его структуры (насколько устойчив к протеолитическим ферментам)

Антигенные совйства могут быть усилены если к антигену добавить адъювант – неорганические вещества (гидроксид алюминия, квасцы, липиды; синтетические – полиоксидон; органические – цитоксины). Адъюванты повышают антигенные свойства и усиливают иммунный ответ т.е. имунногеность.

Специфичность: ей обладают поверхностные структуры антигена и носят название активных центров (эпитопов) именно эти группы распознаются макрофагами, В-лимфоцитами и является активными центрами антигена. Количество этих групп разнообразное. Активные центры антигена определяют силу связи между антигеном и антителом т.е. определяю последнюю стадию иммунного ответа.

Среди гаптенов различают полугаптены – неорганические радикалы (йод, бром, азот, -ОН), которые присоединяясь к белковой молекуле могут изменять специфичность и они вызывают выработку антител, которые и располагаются на поверхности полного белкового антигена.

Проантигены – гаптены, которые соединяются с белками организма при введении парентерально и сенсибилизировать такой организм как аутоантиген. В качестве проантигена может выступить любой лекарственные препарат.

Классификация антигенов.

Ø Видоспецифические

Ø Типоспецифически

Ø Группоспецифические

Ø Общие антигены

Ø Гетероантигены

Микробные антигены

Сосредоточены в клеточной стенке: белки определяют группу О-соматически антигенов (термостабилен) может иметь липополисахаридную природу, поверхносные белки группу К-антигенов, типоспецифичные. Жгутики – Н-антигены это белок флагелин (термолябилен). Экзотоксины так же антигены, эксоферменты (плазмокоагулаза).

Например: E. Coli О111, К56 (род, вид, тип (111,56) – серовар, типоспецифический антиген). S. Typhy О9 (т.е. относится к группе Д). Есть общие антигены внутри семейства, но всегда есть видовые и сероварные антигены изучая антигенную структуру можно идентифицировать бактерии.

Гетероантигены: общие антигены между бактериями и другими биологическими объектами например: человек – сифилитическая трепонема. Второе их название перекреснореагирующие антигены (ПРА) способны реагировать с антителами поэтому антитела на трепонему могут реагировать с тканями и запускать аутоиммунный процесс.

Антигены вирусов.

Нуклеиновая кислота вместе с капсидными белками у простых вирусов. У сложных вирусов есть еще суперкапсид и на поверхности этой оболочки есть липротеиновые антигены (обозначаются цифрами). Например у гриппа: имеет нейроамидазный антиген (около 5), Н1, Н5(птичий грипп). С помощью них вирус адсорбируется на поверхности эритроцитов и склеивает их, нейроамидазный адсорбируется на мембранах клеткок. По антигенным свойствам можно идентифицировать вирусы.

Антигены тела человека.

Изоантигены (индивидуальные антигены). Представлены на различных органах.

Эритроцитарная система (АВО, Rh) – по ним делят на группы крови и резусы. Их более 70, но практически используются только АВО и резус.

В большей степени изоантигены изучены на лейкоцитах т. о образуется система гистсовместимости по индивидуальным тканевым антигенам (Мaior Нistocompa Tibiliti Сomplex) или НLA. Совместимость по этой системе проводится в случае пересадки органов и костного мозга, Эти антигене генетически детерминированы, сцепеленны с генами иммунного ответа. МНТС разделены на 3 класса:

1. Предствалены на поверхности всех ядер клеток нашего организма

2. Представлены на поверхности имунокомпетентнык клеток

3. Представлены на белках системы комплемента

Функции:

1 класс позволяет разделять свое от чужого, 2 класс участвует в двойном распознавании антигена, могут усилить иммунные ответ, заставить клетку дифференцироваться.

Врачи еще различают опухолеспецифические антигены, эмбриональные антигены, маркерные опухолевые, трансплантационные антигены (сингенные – собственные, однояйцевых близнецов, чистых линий животных, аллогенные – взяты от другого человека, другой линии животных, ксеногенные – взятые от другого биологического вида(например человеку лимфоциты свиней)).

 

Антитела.

Имуноглобудины, γ-глобулины – синонимы антител.

Антитела – специфические белки синтезируемые в организме в ответ на поступление антигена находятся в сыворотке крови и находятся в γ-глобулиной фракции сыворотки крови. Составляют основу гуморального иммунитета. Приблизительно в сыворотки крови человека γ-глобулиновая фракция составляет 20%.

Строение антител: молекула Ig- состоит из двух идентичных, тяжелых цепей Н и 2-х легких L цепей которые соединяются между собой дисульфидными мостиками. Структурной единицей Ig являетмся мономер состоящий из 2 Н и 2 L цепей. Среди него различают вариабельную часть и константную часть. Вариабельная часть Н и L цепей составляют фаг-фрагмент к которому присоединяется антиген (2 штуки) специфичность этой связи носит название аффиности антитела, скорость и прочность связи определяет авидность. Константный фрагмен – отвечает за неспецифические функции антител: связь с комплементом, связь с фагоцитами, тучными клетками.

В зависимости от структуры строение, формы Н-цепей различают 5 классов Ig:

1. IgM -

2. IgG

3. IgA

4. IgE

5. IgD

  IgM IgG IgA IgE IgD
Молекулярная масса 160-400    
Количество мономеров    
Валентность    
Прохождение ч/плаценту - + ±    
Константа седиментации 19S 7S      
Функции Участвуют в агглютинации, преципитации, активации, опсанизации, антибактериальная активность, нейтрализуют токсины То же        

IgA – бывают 2 варианта: сывороточные и секреторные, продуцируются клетками эпителия кишечника. Секторные это диметры есть компонент который защищает его от секретов пищеварительного сока, слюны, они обеспечивают местный иммунитет слизистых оболочек.

IgE – свидетели аллергических реакций, в сыворотке крови появляются при аллергических реакциях немедленного типа, взаимодействуют с тучными клетками и заставляют продуцировать гистамин, что определяет аллергии немедленного типа (крапивница, анафилаксия).

IgD – мономеры, склонны к агрегации, продуцируются зрелыми В-лимфоцитами к 10 годам появляются при аутоиммунной патологии, беременности.

Свойства антител.

Нормальные антитела – естественные антитела которые присутствуют в любой сыворотке человека, животного и дают базальный уровень иммуноглобулинов: антиэритроцитарные антитела, противобактериальные. Эти антитела постоянны в организме, дополнительной антигенной стимуляции не требуется все перечисленные микроорганизмы постоянно контактируются с человеком.

Моноклональные антитела – это антитела к одной антигенной детерминанте они принадлежат к одному классу, подклассу аллотипу имеют один вид легких цепей, имеют одинаковую аффиность поскольку моноклональные антитела образуются одним клоном В-лимфоцитов и поэтому эти антитела гомогенные, когда иммунизируют человека вакцинным препаратов или после болезни в сыворотке человека появляется антитела к разным антигенным детерминантам. И поэтому иммунные сыворотки от переболевших или иммунизированных гетерогенны. Гетерогенность антител снижает чувствительность методов индикации антигенов с помощью сывороток.

Получают моноклональные тела методом in vivo гибридом разработанным в 1975 году Келлером и Мильштейном (Нобелевская премия). Суть получение антител этим методом состоит в следующем:

1. этап: Получение гибридому и отбор клеток. Мышь иммунизируют антигеном, после иммунизации берут селезенку и получают из нее лимфоциты, которые должны превращаться в плазматическую клетку продуцирующие антитела. Другую мышь (Balb C) с плазмоцитомой (опухолевый процесс поражающий селезенку) в органах этой мыши есть опухолевая плазматическая клетка, которую совмещают с нормальными клетками от здоровой мыши в присутствии полиэтиленгликоля, которые помогают гибридизации. Получившиеся клетки отбирают на селективной среде – ГАТ (гипоксантин – аминоптерин – тинидин) в этой среде погибнут нормальные клетки, опухолевые клетки, а гибридомные выживут и будут расти.

2. этап: Отбор клеток нужных продуцентов. Проводится методом тестирования на искомые антитела. Делают с помощью иммунологических реакций ИФА, РИФ, пластинки с имобилизированным антигеном

3. этап: Клонирование гибридомных клеток много раз на специальной питательной среде.

4. этап: Консервирование – сипользуют низкие температуры

5. этап: Получение моноклональных антител. Гибридломные клетки вводят внутрибрюшинно белым мышам (здоровым) они там размножаются у них возникает асцит в котором содержится много моноклональных антител.

Второй метод: размножение гибридомных антител на культуре и они там продуцируют антитела (in vitro).

Моноклональные антитела получены к антигенным детерминантам Т (СД4) и В-лимфоцитов. МКА используются для идентификации Т и В – лимфоцитов и их субпопуляции, которые определяют активность, продукцию лимфокина. МКА получены для идентификации цитокинов в сыворотке, ВИЧ-вируса, для диагностики определяют антигенные детерминанты вещества. МКА используют в онкологии для терапии опухолевых заболеваний. МКА для таксономических идентификаций.

В последнии годы гибридому культивируют с помощью аппарата цитостат куда подается питательная среда и гибридомность поддерживается автоматически → большое количество генетически гомогенных антител.

Полные и неполные антитела: Деление основано на способности полных антител образовывать в результате иммунологической реакции с антигеном комплекс видимый невооруженным глазом (агглютинация) при преципитации этот комплекс называется преципитат (т.е. аморфный осадок). У полного антитела имеетя две и более валентности (активных центров) и взаимодействия с антителом образует решетку. (IgM, IgG, IgA) Неполное антитело моновалентное и взаимодействуя с антителом связывает одну детерминанту и этот комплекс мы не видим поэтому они еще называются блокирующими антителами. Поэтому для выявления неполных антител требуется специальный метод Кумбса при котором используются вторичные антитела, и оно садится на первичное антитело и тогда этот антиген свяжется в макроагрегат.

Комплимент связывающие несвязывающие антитела. Связывающие взаимодействуют с комплментом с помощью FС-фрагменту и дальше идет реакция связывания комплемента. Несвязывающие не взамодействуют с комплементом.

Антитела абзимы – абзимология (антитела ферменты), катализаторы биохимических процессов. У мноих Ig есть ферментативная активность (протеазная, нуклеазная). Есть антитела ферменты и на другие разновидности веществ. Считают что эти свойства антител очень древние.

Бифункциональные антитела: обладают две специфичности фаг-фрагментов т.е могут присоединять два антигена разной специфичности.

Имунотоксины: гибрид молекулы Ig с токсином. Эти антитела получают методом биотехнологии. Присоединяя к Ig молекулу токсина такое антитело способно направленно доставить токсин к клетке мишени (опухолевой) и нарушить метаболизм этой клетки. Используют в лечении опухолей, аллергий.

Антигенные свойства антител.

Само антитело любой специфичности наделен антигенными свойствами и поэтому в молекуле Ig различают четыре антигенных детерминанты: видовые, изотипические, аллотипичесике и идеотипические.

Видовые: характерны для Ig всех особей. Определяются строением легких и тяжелых цепей.

Изотипические: являются групповыми и служат для дифференцировки иммуноглобулина на 5 классов (M, G, A, D, E) и множества подклассов G и А имеет подклассы. Локализуются детерминанты в тяжелых цепях.

Аллотипические: Являются индивидуальными присущими конкретному оргназму, они располагаются в легких и тяжелых полипептидных цепях и на основании их можно различить особи одного вида.

Идеотипические: располагаются в активных центрах. Обнаружение этого антитела послужило основание для создания теории антиидеотипа, которая лежит в основе регуляции биосинтеза антител. Этот антиген обладает регуляторными свойствами (когда идеотипов много→много антиидеотипа→прекращается синтез антител).

Основные свойства антител можно разделить на прямые эффекты (эффеторные свойства) т.е. способно нейтрализовать антиген, оказать ферментативное действие, IG является маркером антигена, эффекторные свойства направлены на участие или кооперативное действие антитела с фагоцитами, комплементами, с помощью этих взаимодействия и осуществляется прямое действие.

Непрямое действие связано с активацией комплемента, индукцией иммунного фагоцитоза и антителозависимой клеточная цито токсичность.

Генетика антител.

Образованию антител присуще своеобразное гентичекое кодирование. Структура кодируется ни одним геном, а большим числом генов эти гены находятся в фрагментарном состоянии которые располагаются в трех различных хромосомах и располагаются независимо. Молекулярно-генетическая теория происхождениея разработана Тонегавой 1983 году и основа этой теории состоят в следующем:

1. Лимфогенез в нашем организме идет непрерывно

2. В пределах одного оргнаизма существует или может возникнуть В-лимфоциты специфичные практически к любому антигену

3. Дифференцировка В-лимфоцитов возникает в результате первичного иммунного ответа, идет непреавно с размножением и одновременно дифференцировка сопроваждается перестройками в впередалх имуноглобулиовых генов этот процесс сопровождается последовательной сменой классов иммуноглобулинов. На первом этаме образуются IgМ, а потом на позних стадиях этот же В-лимфоцит продуцирует IgG этой же специфичности. Попутно идут точечные перестройки иммуноглобулина что привдит к тому что на повенрхности иммуноглобулина появляются специфические реценторы. Результат: рекомбинация генов иммунного ответа.

Динамика антитела продукции.

Выделяют латентную фазу: переработка антигена и представление его имунокомпетентной клетке→ пролиферация специфического клона клеток антител. Титры антител не появляются (3-5 дней).

Логарифмическая фаза: увеличение В-лимфоцитов которые пролиферируют и распространяют антитела (титр растет, 7 - 9 день).

Стационарная фаза максимальный уровень антител в крови 20-30 день

Первичный иммунные ответ. Снижение антител 2-4 месяц, образование иммунного ответа, образование IgM, D. В конце может быть в сыворотке Ig G, A т к наступает переключение синтеза в следствии образуются клоны В-лимфоцитов специфичные для конкретного антигена и образуются В-лимфоцита памяти. Повторный контакт приведет к образованию вторичного иммунного ответа.

Вторичный иммунный ответ: коротка латентная фаза равна я1-2 дням, высокий титр антител только IgG. В-лимфоцитов память будет больше.

Это используется в практике: вакцинация которая включает первичную вакцинацию и обязательную ревакцинацию. Получение иммунных сывороток.

Иммунологическая память – способность организма при повторной встрече с антигеном реагировать более активно (вторичный иммунный ответ), сохраняется годами за счет образование В-лимфоцита. ИП характрна как и для гуморального так и для клеточного иммунитета. Эти используется в вакцинации.

Иммунологическая толерантность (ареактивность) – форма иммунного ответа противоположная имуногогической памяти, отсутствие иммунного ответа на повторную встречу с антигеном. Бывает врожденной (отсутствие иммунной реакции на собственные антигены), приобретенной (после введения препаратов имунодепресантов снижающих иммунный ответ или введение в эмбриональном периоде, когда иммунная система еще не функционирует. ИТ была открыта в 1953 году Медаваром и Гашеком (Нобелевская премия). Механизм не расшифрован, нос считают связан с :

1. Элиминацией клонов лимфоидных клеток реагирующих на антиген. Разрушение клона идет за счет апоптоза.

2. Блокада рецепторов В и Т клеток

3. Быстрое связывание антигена и выведение его из организма.

Антиген который вызывает ИТ – толероген это чаще всего полисахарид, способны сохранятся. Явление ИТ используется для решения таких проблем как пересадка органов и тканей за счет облучение организма, приема имунодепресантов, для лечения аутоиммунных реакций, аллергической патологии и других состояний.

 

megalektsii.ru


Смотрите также