63. Моноклональные антитела. Получение, применение. Получение моноклональных антител


Гибридомная технология получения моноклональных антител

При введении антигена в организм возникает большое семейство антител, направленных к разным его детерминантам и различающихся даже внутри группы антител, направленных к одной и той же детерминанте. Однако иногда требуется определённый вид антител, специфичных лишь к одной детерминанте антигена и имеющих одни и те же характеристики.

Моноклональные антитела – это антитела строго определённой специфичности, продукт одного клона. Моноклональные антитела гомогенны как по специфичности, так и по физико-химическим свойствам. В природе почти никогда не наблюдается истинный моноклональный ответ.

Получение моноклональных антител стало возможным благодаря работам Георга Келера и Цезаря Мильштейна, которые в 1984 г. стали лауретами Нобелевской премии. Они применили оригинальный подход, получив гибрид нормальной антителообразующей клетки (АОК) и опухолевой клетки (гибридому). Гибридома наследовала от нормальной клетки способность к синтезу антител, а от опухолевой клетки – способность к неограниченному числу делений (бессмертие).

Для получения гибридом наиболее подходящими оказались клетки плазмоциты, опухоли, происходящей из плазматических клеток. Эти клетки по своей дифференцировке наиболее соответствовали антителообразующим клеткам, так как сохраняли способность к синтезу иммуноглобулинов. С использованием специальных приемов были получены мутантные плазмоцитомные клетки, не способныесинтезировать нуклеиновые кислоты по резервному пути из гипоксантина и тимидина.

Для получения АОК животных (мышей или крыс) активно иммунизировали определенным антигеном. Когда продукция антител достигала высокого уровня, из селезенки и лимфоузлов животных (мест скопления АОК) готовили суспензию клеток.

Затем вызывали слияние АОК с клетками плазмоцитомы, применяя для этой цели полиэтиленгликоль (ПЭГ) – полиэлектролит, способствующий слиянию клеточных мембран. Гибридома сохраняла способность к клеточному делению, в процессе которого хромосомы обоих ядер перемешивались и образовывали одно общее ядро, содержащее гены иммуноглобулинов обеих клеток – предшественников.

Для того чтобы отделить заданную гибридому от присутствующих в системе отдельных неслившихся клеток и от гибридов иного состава или иной специфичности, чем требуемые, авторы разработали специальную схему, использующую отбор клеток в селектирующей ГАТ-среде, содержащей гипоксантин, аминоптерин и тимидин. Аминоптерин является высокотоксичным агентом, блокирующим синтез пуриновых оснований, необходимых для дальнейшего синтеза нуклеиновых кислот. Это приводит к гибели опухолевых клеток, имеющих метаболический дефект, не позволяющий использовать резервный путь синтеза пуриновых оснований. АОК способны расти в ГАТ-среде, но будучи смертными погибают естественным путем через 1 – 2 недели. Гибридомы же сохраняют жизнеспособность, поскольку сочетают свойства «бессмертной» опухолевой клетки и АОК, использующих обходной метаболический путь синтеза пуринов.

Выжившие в ГАТ-среде гибридомные клетки рассеивают в пластиковые планшеты на 96 лунок ёмкостью 0,2 см3 (в каждую по 10 гибридом), через несколько дней содержимое лунок проверяют на наличие антител нужной специфичности (т. е. моноклональных). Клетки из лунок, содержащих таковые, клонировали, рассеивая по 1 клетке в лунку. Эта клетка-предшественник дает начало формированию «бессмертного» клона, продуцирующего моноклональные антитела. Процедура повторяется до 2 раз.

Полученные клоны гибридомных клеток можно хранить длительное время при -70 оС, как угодно долго культивировать на питательных средах, накапливая антитела, перевивать от одного подопытного животного другому. Секретируемые этими клетками антитела не содержат посторонних антител, физико-химически однородны и могут рассматриваться как чистые химические реактивы.

Следует отметить альтруизм создателей гибридомной технологии. В интересах развития науки Г. Келер и Ц. Мильштейн отказались от патентования своего метода, более того предоставили клеточную линию плазмоцитомы для исследования во все ведущие исследовательские лаборатории в мире.

В настоящее время гибридомная технология лежит в основе получения абзимов, о чем говорилось выше. Моноклональные антитела в силу своей высочайшей специфичности, стандартности и технологичности широко применяются как диагностикумы для определения широкого спектра биологически активных веществ: белков, гормонов, медиаторов воспаления, бактериальных и вирусных антигенов, различных ядов.

media.ls.urfu.ru

ПОЛУЧЕНИЕ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ | Опубликовать статью РИНЦ

Толькова Е.С.

Бакалавр, Нижегородский государственный технический университет им. Р.Е. Алексеева

ПОЛУЧЕНИЕ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ

Аннотация

В статье рассмотрено использование моноклональных антител в иммунотерапии и иммунодиагностике онкологических заболеваний и их производство с использованием гибридомной технологии, представлена технологическая схема и машинно-аппаратурная схема производства

Ключевые слова: моноклональные антитела, иммунотерапия, гибридомная технология

Tolkova E.S.

Undergraduate student, Nizhny Novgorod State Technical University n.a. R.E. Alekseev

PRODUCTION OF MONOCLONAL ANTIBODIES

Abstract

The article considers the use of monoclonal antibodies in immunotherapy and immunodiagnostics of oncological diseases and their production using hybridoma technolody with flow diagram and technological scheme of manufacturing process

Keywords: monoclonal antibodies, immunotherapy, hybridoma technology

Моноклональные антитела (МКА) – это иммуноглобулины, вырабатываемые иммунными клетками, принадлежащими к одному клеточному клону [1]. Их производство появилось относительно недавно: сообщение о разработке гибридомной технологии было опубликовано в 1975 году учеными Кёлером и Мильштейном, за что в 1984 году они получили Нобелевскую премию.

Создание иммунопрепаратов и диагностических тест-систем является одним из наиболее перспективных направлений разработки биотехнологических препаратов. Объем мирового рынка, предположительно, достигнет 60-80 млрд долларов к 2018 году. В России разработка и продажа препаратов моноклональных антител также является одним из быстрорастущих сегментов рынка. Однако в том, что касается этих препаратов, российский рынок до сих пор на 90% представлен импортными препаратами [4].

Препараты на основе МКА получили широкое распространение в иммунотерапии и иммунодиагностике злокачественных заболеваний. Уже сегодня без препаратов на основе МКА немыслима диагностика злокачественных заболеваний крови, определение иммунологического статуса пациентов, контроль за эффективностью лечения. Антитела, узнающие опухолеспецифичные антигены, могут использоваться для идентификации опухолевых клеток в различных образцах, включая образцы биопсии. С этой целью применяют метрологические методы, т.е. методы изучения антител и антигенов с помощью реакций антиген-антитело, определяемых в сыворотке крови и других жидкостях, а также тканях организма. Для диагностики онкологических заболеваний разработаны различные диагностикумы для количественного определения онкомаркеров: ПСА, СА 125, альфа-фетопротеина и многих других. Помимо этого антитела узнают раковые клетки in vivo и поэтому накапливаются в районе опухоли после введения в кровь больного раком. Таким образом, использование антител с присоединенной радиоактивной меткой также может использоваться для идентификации опухоли, и этот подход может также быть полезен для локализации опухолей радиографией [6].

Использование МКА для иммунотерапии злокачественных образований обусловлено высокой аффинностью антител, используемых в препаратах. Однако главным преимуществом препаратов на основе МКА является их низкая токсичность по сравнению с другими методами лечения. Так, например, при некоторых опухолях иммунотерапия препаратами МКА обладает несомненной эффективностью, сопоставимой с химиотерапией и значительно меньшей токсичностью [5]. Иммунотерапия онкологических заболевания с помощью МКА включает их использование в радиотерапии и в биотерапии.

МКА можно использовать для доставки радиоизотопов к опухолям для диагностической визуализации. Однако если использовать более мощные изотопы, такие как иттрий-90 и иод-131, то можно очень эффективно уничтожать опухолевые клетки. В этом случае, антитела, узнающие опухолеспецифические антигены, помогают концентрировать изотоп в месте локализации опухоли, максимально увеличивая смертоносный эффект для опухолевых клеток и минимизируя влияние на окружающие ткани. Этот подход известен как радиоиммуннотерапия (РИТ), он оказался очень успешным при лечении гематологических раков и в меньшей степени для лечения некоторых опухолей.

Недостаток обычной РИТ состоит в том, что влияние циркулирующих радиоактивных клеток часто приводит к повреждению костного мозга и стволовых клеток. Для преодоления этой проблемы было разработано несколько новых подходов, включающих предварительный выбор мишени. Например, трехступенчатый подход, использовавшийся при лечении рака яичников, заключается в следующем: на первой стадии в организм вводится антитело с присоединенным остатком биотина, узнающее опухолевый антиген. Затем вводится второй компонент, который выводит из системы кровообращения циркулирующие антитела. Наконец, вводится содержащий радиоизотоп стрептавидин, который доставляет высокую дозу радиоактивности непосредственно к раковой опухоли с минимальным уровнем вредя для других тканей. Этот подход основан на высоком сродстве биотина и стрептавидина, что позволяет целенаправленно и эффективно воздействовать на опухоль [5].

Биотерапия – новейшее направление в раковой терапии, использующее биологические агенты, такие как белки (включая антитела), пептиды, нуклеиновые кислоты, вирусы и целые клетки. Около 20% разрабатываемых в настоящее время фармацевтических препаратов – это антитела и их производные; многие из них предполагается использовать для лечения рака. МКА, которые узнают опухолевые антигены, запускают каскад комплемента и другие цитотоксические эффекторные механизмы, помогая тем самым разрушать раковые клетки и удалять их из организма. Более сложные производные антител включают иммунотоксины, у которых к антителу присоединен мощный токсин (например, рицин) и иммунные препараты, у которых к антителу присоединена малая молекула, например, антибиотик. Последняя категория иммуноконьюгатов, которые могут выступать в качестве противораковых агентов – абзимы – антитела, соединенные с ферментами. Использование таких молекул предполагается в случае ADEPT-терапии («антитело-направленный фермент/пролекарственной терапии»), при которой абзим превращает циркулирующее пролекарство (неактивное) в токсичное противоопухолевое лекарство [3, 5].

Традиционный метод производства МКА – это метод in vivo, представляющий собой введение мышам или крысам гибридомных клеток выбранного клона с последующим развитием опухолевых асцитов и отбором асцитной жидкости. Однако этот метод обладает рядом значительных недостатков. Во-первых, от мыши можно получить до 50 мг целевого продукта, что не удовлетворяет потребность в препаратах на основе моноклональных антител. Во-вторых, производство in vitro позволяет обеспечить контроль производства, стандартизацию, а также имеет важные преимущества над производством в условиях in vivo в отношении вирусной безопасности, постоянства производства и отсутствия контаминирующих иммуноглобулинов в неочищенных сборах. Другие преимущества этого метода производства заключаются в использовании культуральных сред без сыворотки, а также в значительном сокращении использования животных [1]. Исходя из этих соображений, способ производства in vitro является предпочтительным, и производство in vivo допускается только в определенных обстоятельствах и должно быть обосновано.

Существуют два подхода к культивированию животных клеток in vitro. Первый подход основан на иммобилизации и включении клеток в твердую матрицу. В качестве примера можно привести перфузию в пористые волокна, применение микрокапсул, агарозных микрошариков или керамических кассет. Второй подход включает культивирование клеток в гомогенной суспензии. Выбор одного из этих двух методов получения моноклональных антител в основном определяется требованиями производственного процесса.

Тем не менее, культивирование клеток в гомогенной суспензии имеет ряд преимуществ: это довольно простой и легкий в управлении метод. Он обладает высокой воспроизводимостью, а значит, высокими потенциальными возможностями для производства высококачественной продукции. Система получения моноклональных антител в гомогенной суспензии способна работать асептически в течение длительного времени, а также просто и эффективно масштабируется. Кроме того, при проведении процесса в суспензии за счет перемешивания достигается высокая гомогенность культуры.

Технологическая схема производства моноклональных антител может быть представлена следующим образом:

06-07-2015 09-18-22

Рис. 1 – Технологическая схема производства моноклональных антител

Она включает два этапа – лабораторный, результатом которого является подготовка инокулята, и цеховой, результатом которого является непосредственно получение готового продукта.

Процесс иммунизации проводится с целью формирования иммунного ответа и запуска выраженного антителообразования. Дополнительной задачей является перевод их в такое функциональное состояние, при котором они способны будут образовывать антителопродуцирующие гибридные клетки. Обычно для этого используют мышей или крыс, которых иммунизируют очищенными антигенами. Большое значение имеет то, насколько эффективно проходит процесс иммунизации. Его успех определяется рядом факторов, в том числе свойствами иммуногена, сочетанием с адъювантами, подбором оптимальной схемы иммунизации.

Параллельно с этим происходит культивирование миеломы. Клетки миеломы  – это злокачественные трансформированные лимфоидные клетки костного мозга, которые способны синтезировать моноклональные антитела определенной специфичности и обладают способностью к неограниченному размножению in vivo и  in vitro.

Плазмоцитомы обладают слабой способностью к росту вне организма. Для поддержания культуры клеток используются различные ростовые факторы, источником которых могут быть перитонеальные макрофаги, спленоциты или сыворотка крови мышей, иммунизированных полным адъювантом Фрейнда.

Гибридизацию лимфобластов и плазмоцитомы проводят путем клеточного слияния, опосредованного различными агентами, приводящими к изменению мембран клеток, формированию цитоплазматических контактов и формированию дикарионов. В качестве индуктора слияния клеток в современных работах используется полиэтиленгликоль (ПЭГ). Он вызывает перераспределение мембранных белков, обеспечивая контакт и слияние клеток за счет ионов кальция, приводящих к образованию кальциевых каналов между клетками. Более современный способ индукции слияния клеток состоит в использовании воздействия электрических импульсов, в результате чего получают несколько типов дикарионов.

Для отбора гибридных клеток используется среда НАТ, содержащая аминоптерин, а также гипоксантин и тимидин, опосредующие альтернативный путь синтеза ДНК. В результате селекции выживают только дикарионы, возникшие в результате слияния двух лимфобластов или лимфобласта и плазмоцитомы. Первые быстро погибают ввиду ограниченного пролиферативного потенциала, а целевые гибридные клетки выживают.

Обнаруженные гибридомные клоны должны быть немедленно реклонированы, т.к. после слияния во многих гибридах начинается «выброс» хромосом и в ходе этого некоторые клетки могут потерять хромосомы, несущие гены синтеза иммуноглобулинов. Существует несколько способов клонирования гибридом. При методе предельных разведений клетки отбирают из тех лунок, в которых обнаружены антитела нужной специфичности, ресуспендируют и затем разводят таким образом, чтобы при последующем разливе в каждую лунку планшета попала бы только одна клетка и формировался только один клон гибридом.

Следующим этапом является скрининг гибридов-продуцентов. Наиболее распространенными методами являются методы иммуноанализа на основе ферментных и флуоресцентных меток.

После отбора гибридомных клеток, синтезирующих интересующие антитела, приступают к их массовому наращиванию, результатом чего является подготовка инокулята.

06-07-2015 09-18-45

Рис. 2 – Машинно-аппаратурная схема производства

На рисунке представлена машинно-аппаратурная схема производства Методом масштабирования приготовляется инокулят в CO2-инкубаторе 1. Приготовляется и стерилизуется среда в стерилизаторе 2. Готовая и стерилизованная питательная среда и инокулят подаются в ферментер 3.

После процесса ферментации содержимое ферментера подается в центрифугу 4, где разделяются культуральная жидкость и биомасса. Предварительная очистка культуральной жидкости производится в фильтре 5, после чего культуральная жидкость поступает в емкость для хранения 6.

Из емкости для хранения культуральная жидкость поступает в колонну для аффинной хромотографии 7, а затем в колонну для ионно-обменной хромотографии 8. Затем жидкость стерилизуется в установке вирусной инактивации 9. Очистка от остаточных примесей осуществляется в колонне гель-фильтрации 10, после чего продукт поступает в емкость 11.

Накопление целевого продукта происходит в результате ферментации. Наиболее эффективным подходом является культивирование в гомогенной суспензии. Для культивирования могут использоваться бессывороточные среды, например, среда на основе RDF. Примером среды, включающей сыворотку, может быть RPМI 1640. Однако в современных работах чаще всего используются бессывороточные среды. При этом культивирование проводят при температуре около 37оС в присутствии СО2. Очень важно эффективное перемешивание, так как при культивировании необходимо равномерное распределение клеток по всему объему сосуда. Процесс ферментация аэробный, производится полунепрерывным способом с подпиткой при активной подаче воздуха.

При культивировании клеток целевой продукт секретируется в культуральную жидкость, поэтому необходимо удаление биомассы, это осуществляется в процессе центрифугирования. После отделения биомассы, культуральная жидкость фильтруется через мембранный фильтр с размером пор 0,2 мкм и временно помещается в хранилище для дальнейшей обработки. В процессе фильтрации осуществляется полное удаление оставшихся клеток, а также снижение объема жидкости с целью облегчения хромотографии. Может потребоваться несколько следующих друг за другом этапов фильтрации для достижения этих целей.

От  области применения антител зависит необходимая степень очистки. Для диагностических целей достаточно иметь препараты антител 70 – 95% степени чистоты. С другой стороны, при применении антител  в иммунотерапии их чистота должна быть выше. Очистка осуществляется в следующих друг за другом стадиях аффинной и ионно-обменной хроматографии. В качестве ионнообменника для выделения антител чаще всего используют диэтиламиноэтил, прикрепленный к целлюлозе, сефарозе или акриламидным гранулам. В аффинной хроматографии для очистки используют прикрепленные к носителю антигены.

Вирусная инактивация осуществляется с целью обеззараживания вирусов и бактерий, находящихся в культуральной жидкости.

Следующий этап производства имеет своей целью удаление оставшихся примесей и повышение объемной концентрации целевого продукта. Для этого применяется гель-фильтрация на колонках с агарозой, сефарозой или сефадексом.

Разработка иммунопрепаратов – активно развивающаяся область биотехнологии. В том, что касается разработки препаратов на основе моноклональных антител, наблюдается тенденция к уменьшению использования животных. Так, например, проводились работы по созданию генетически модифицированных бактерий на основе штамма E. coli, способных синтезировать моноклональные антитела [3]. Кроме этого, активно разрабатываются так называемых гуманизированные и химерные антител, которые больше напоминают человеческие иммуноглобулины и потому будут более безопасными в использовании.

Однако создание специфических антител, не вызывающих перекрестных реакций, представляет собой довольно трудную задачу, поскольку получение антител человека путем традиционной гибридомной технологии сталкивается с рядом проблем [2]:

  • хромосомы человека в клетках, полученных слиянием лимфоцитов человека с клетками миеломы мыши, нестабильны;
  • пока не удалось получить эффективные клеточные линии миеломы человека, которые могли бы заменить мышиные;
  • иммунизация человека различными антигенами не проводится из этических соображений.

Таким образом, для получения антител, не вызывающих у человека развития иммунного ответа, было необходимо разрабатывать иные методы. Химерные, гуманизированные и одноцепочечные антитела были разработаны путем сочетания использования гибридомной технологии и технологии рекомбинантной ДНК [2, 5].

Химерные (также гибридные) антитела – это антитела, в которых домен мышиных иммуноглобулинов замещен соответствующим константным доменом иммуноглобулина человека. Они разрабатываются следующим образом: при помощи рекомбинантной технологии соединяются разнородные молекулы ДНК, кодирующие человеческий Fc-фрагмент и мышиный Fab-фрагменты антитела. Поскольку иммуногенные и эффекторные свойства антител определяются в основном его константным доменом, а специфичность взаимодействия с антигеном – вариабельным доменом, то химерные антитела вызывают значительно меньше осложнений при сохранении специфичности, аффинности и авидности, свойственных мышиным моноклональным антителам.

В структуре гуманизированных антител мышиное происхождение имеют только небольшие антигенсвязывающие гипервариабельные участки вариабельного домена. Таким образом, гуманизированные антитела содержат еще меньше чужеродного белка, и соответственно, вероятность иммунного отторжения организмом человека существенно снижается. Это в основном снимает проблему развития иммунного ответа на введение антител больному с терапевтическими или диагностическими целями.

Наряду с полноразмерными химерными и гуманизированными антителами, методами генной инженерии возможно получать так называемые одноцепочечные антитела, состоящие только из вариабельного фрагмента иммуноглобулина, т.е. из вариабельных доменов легких и тяжелых цепей иммуноглобулина, ковалентно связанных гибким пептидным линкером. Одноцепочечные антитела представляют собой минимальный фрагмент молекулы иммуноглобулина, который обладает хорошей антигенсвязывающей активностью.

Проводятся исследования по созданию в перспективе полностью человеческих рекомбинантных антител путем объединения вариабельных доменов антител человека, обладающих целевой активностью, с константными доменами иммуноглобулинов человека нужного изотипа. Главной стадией в создании полноразмерных человеческих антител является получение вариабельных доменов, отвечающих за специфичность антитела, его аффинность и биологические свойства [2].

Препараты на основе МКА получают все большее распространение в иммунодиагностике и, можно сказать, становятся незаменимыми в терапии злокачественных заболеваний, так как они являются эффективным средством терапии и обладают гораздо меньшей токсичности, чем другие формы терапии злокачественных заболеваний. Можно предположить, что разработка иммунопрепаратов на основе МКА будет продолжать активно развиваться, и объем мирового рынка будет расти.

Литература

  1. МР 3.3.2.2359-08 Медицинские иммунобиологические препараты. Организация производства и контроль качества моноклональных антител
  2. Алмагамбетов, К. Х. Биотехнология / К. Х. Алмагамбетов. – Астана. – 2011. – 270 с.
  3. Глик, Б. Молекулярная биотехнология. Принципы и применение. Пер. с англ. / Б. Глик., Дж. Пастернак. – М.: Мир. – 2002. – 589 с.
  4. Обзор рынка биотехнологий в России и оценка перспектив его развития [Электронный ресурс] URL: http://www.rusventure.ru/ru/programm/analytics/docs/20141020_Russia%20Biotechnology%20Market_fin.pdf (дата обращения 28.06.2015)
  5. Примроуз, С. Геномика. Роль в медицине / С. Примроуз, Р. Тваймен ; пер. с англ. – М.: БИНОМ. Лаборатория знаний. – 2008. – 277 с.
  6. Черенков, В. Г. Клиническая онкология: учеб. пособие / В. Г. Черенкв. – 3-е изд., испр. и доп. – М.: МК. – 2010. – 434 с.

References

  1. MR 3.3.2.2359-08 Medicinskie immunobiologicheskie preparaty. Organizacija proizvodstva i kontrol’ kachestva monoklonal’nyh antitel
  2. Almagambetov, K. H. Biotehnologija / K. H. Almagambetov. – Astana. – 2011. – 270 s.
  3. Glik, B. Molekuljarnaja biotehnologija. Principy i primenenie. Per. s angl. / B. Glik., Dzh. Pasternak. – M.: Mir. – 2002. – 589 s.
  4. Obzor rynka biotehnologij v Rossii i ocenka perspektiv ego razvitija [Jelektronnyj resurs] URL: http://www.rusventure.ru/ru/programm/analytics/docs/20141020_Russia%20Biotechnology%20Market_fin.pdf (data obrashhenija 28.06.2015)
  5. Primrouz, S. Genomika. Rol’ v medicine / S. Primrouz, R. Tvajmen ; per. s angl. – M.: BINOM. Laboratorija znanij. – 2008. – 277 s.
  6. Cherenkov, V. G. Klinicheskaja onkologija: ucheb. posobie / V. G. Cherenkv. – 3-e izd., ispr. i dop. – M.: MK. – 2010. – 434 s.

research-journal.org

63. Моноклональные антитела. Получение, применение.

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести пред­варительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопродуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.

Гибридомы, продуцирующие моноклональные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.

 Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

64 Методы приготовления и применения агглютинирую­щих, адсорбированных сывороток.

В диагностике инфекционных болезней широко применя­ются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависи­мости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемо­литические, противовирусные.

Агглютинирующие сыворотки. Агглютинирующую сыворотку получают иммунизацией кроликов (внутривенно, подкожно или внутрибрюшинно) взвесью убитых бактерий, начиная с дозы 200 млн., затем 500 млн., 1 млрд., 2 млрд., микробных тел в 1 мл, с интервалами 5 дней. Через 7—8 дней после последней иммунизации берут кровь и определяют титр антител. Титром агглютинирующей сыворотки называется то макси­мальное разведение сыворотки, при котором происходит агглютинация с соответствую­щим   микроорганизмом.

Агглютинирующие сыворотки применяются при идентифи­кации микроба в развернутой реакции агглютинации. Если изучаемый микроорганизм агглютинируется сывороткой до титра или до половины значения титра, его можно считать принадлежащим к тому виду, название которого указано на этикетке ампулы.

Неадсорбированные агглютинирующие сыворотки облада­ют высоким титром — до 1 : 12 800 — 1 : 25 600.

Недостатком таких сывороток является то, что они способ­ны давать групповые реакции агглютинации, так как они содержат антитела к бактериям, имеющим общие антигены в пределах семейства, группы и рода.

Поэтому в настоящее время большинство агглютинирую­щих сывороток выпускаются адсорбированными, монорецепторными и адсорбированными поливалентными, содер­жащими только типовые или видовые антитела и соответст­вующими или определенному типу или виду микроорганизма. Эти сыворотки не подлежат разведению.

Для получения таких сывороток применяют метод Кастелляни — метод адсорбции, который состоит в том, что при насыщении агглютинирующей сыворотки родственны­ми гетерогенными бактериями происходит адсорбция групповых антител, а специфические антитела остаются в сыворот­ке. В зависимости от полноты истощения групповых агглюти­нинов можно получить монорецепторные сыворотки — сыво­ротки, имеющие антитела только к одному рецептору-антигену или адсорбированные, поливалентные, дающие реакции агглю­тинации с двумя — тремя родственными бактериями, имею­щими общий антиген, в отношении которого проводилась ад­сорбция.

Адсорбированные сыворотки применяют при идентифика­ции выделенных возбудителей в реакции агглютинации на стекле (пластинчатый метод).

 Агглютинирующие сыворотки наиболее широко применя­ются при диагностике заболеваний, вызываемых бактериями семейства Enterobacteriaceae. Так, при идентификации эшерихий используются поливалентные и типовые ОК-сыворотки; при дифференциации сальмонелл — набор сывороток: агглю­тинирующая адсорбированная поливалентная сальмонеллезная О-сыворотка (групп А, В, С, Д, Е) — для определения принадлежности к роду Salmonella, при положительном ре­зультате — определяют отдельно с каждой сывороткой (входя­щей в смесь) серологическую группу и в заключение опреде­ляется серологический тип выделенного возбудителя с моно-рецепторными Н-сыворотками сальмонелл, входящих в данную группу.

studfiles.net

Получение моноклональных антител

Министерство образования Российской Федерации

Самарский Государственный Университет

Реферат на тему:

ПОЛУЧЕНИЕ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ

Выполнила студентка 542 Б группы

биологического факультета СамГУ

Миронова Ирина

Самара

2001

Введение

Для многих исследований, связанных с изучением биологических структур большую ценность представляют реагенты, способных специфически взаимодействовать с данной структурой. Универсальным реагентом, обладающим указанным свойством, считается молекула иммуноглобулина. Несмотря на то, что иммуноглобулины, являясь антителами, взаимодействуют только с антигеном, то есть с молекулой способной вызвать иммунный ответ, для большинства структур удается подобрать условия, при которых они становятся антигенами и индуцируют выработку комплиментарных антител (например, при конъюгации с сильными иммуногенами). Именно этим объясняется большое распространение иммунологических методов, связанных с использованием антител, в различных областях биологии и медицины.

Серьезную проблему при применении антисывороток для идентификации и количественного определения антигенов в различных областях исследований представляет неспецифическое связывание и перекрестная реактивность антител.

История создания метода

Многие исследователи пытались отыскать способы получения антител с узкой специфичностью. Так, при определенных условиях иммунизации бактериальными полисахаридами удается получить высокогомогенный аппарат антител с узкой специфичностью. Кроме того, возможно слияние плазмацитомы (опухоли, возникшей из антителообразующей клетки или ее предшественника) с клетками селезенки иммунизированного животного, получив таким образом гибридные клетки (гибридомы), унаследовавшие от опухолевых клеток способность неограниченно размножаться, а от клеток селезенки – синтезировать антитела предопределенной специфичности.

Предпосылками для возникновения метода получения гибридом, синтезирующих моноклональные антитела, были разработки двух методологических подходов:

1) получение миелом, адаптация их к условиям культивирования вне организма;

2) метод соматической гибридизации клеток.

У мышей довольно легко получить миеломы (плазмацитомы). Эти опухоли являются потомками одной клетки (то есть имеют моноклональное происхождение) и секретируют уникальные иммуноглобулины, некоторые из которых могут взаимодействовать с известными антигенами. Опухоли индуцируют у животных путем внутрибрюшинного введения минеральных масел или инертного твердого пластика. Для возникновения миелом большое значение имеет генетический статус животного, и только у двух линий инбредных мышей экспериментаторам удалось получить такие опухоли.

Миеломные клетки мыши оказались чрезвычайно удобными для изучения биохимии продукции иммуноглобулинов и дали очень многое для понимания структуры, механизмов секреции и их функции. Однако, миеломная система как источник антител к большинству антигенов не оправдала надежды исследователей – не удавалось иммунизировать животных, а затем получить мышиные миеломы, продуцирующие антитела к иммунизирующие антигену. Из тысяч миеломных опухолей, индуцированных у мышей, лишь единичные вырабатывали иммуноглобулины, которые реагировали с известными антигенами, что было обнаружено путем грубого скринирования с множеством потенциальных антигенов. Таким образом, миеломные белки оказывались с неизвестной антигенной специфичностью.

Другой предпосылкой возникновения метода получения гибридом явилась техника гибридизации соматических клеток, разработка которых широко проводилась после открытия феномена спонтанной гибридизации. При слиянии плазматических мембран клеток образуются клетки с двумя или большим числом ядер – гетерокарионы. После первого деления ядра сливаются и образуется одно ядро с набором хромосом от всех слившихся партнеров – образуется гибридная клетка. Низкую частоту образования гибридов можно было увеличить, использовав ряд агентов, вызывающих слияние: вирус Сендай, лизолецитин, полиэтиленгликоль.

Даже при использовании агентов, повышающих слияние, частота образующихся гибридов крайне низка. Для их выделения необходимы селективные среды, позволяющие расти преимущественно образовавшимся гибридам. В настоящее время разработано несколько принципов селекции гибридных клеток. Одним из наиболее распространенных является метод, основанный на применении системы, содержащей гипоксантин, амидоптерин и тимидин (система ГАТ).

Селекция гибридных клеток основана на том, что в ГАТ среде родительские миеломные клетки погибают, а нормальные клетки селезенки не обладают способностью расти при данных условиях культивирования, так что выживают и размножаются только гибридные клетки, унаследовавшие от родительских клеток способность размножаться и синтезировать специфические иммуноглобулины.

Полностью процедура получения моноклональных антител включает в себя следующие этапы:

ﭼ иммунизация животных;

ﭼ подготовка клеток к слиянию;

ﭼ слияние;

ﭼ отбор индуцирующих специфические антитела клонов;

ﭼ клонирование и реклонирование;

ﭼ массовая наработка гибридомных клеток;

ﭼ получение культуральной жидкости или асцита, содержащих антитела;

ﭼ выделение антител.

Обычно вся процедура от момента начала иммунизации до выделения антител занимает 3-4 месяца.

Организация работы и оборудование. Для работы по получению гибридом желательно выделить отдельное помещение. Эксперимент можно проводить и в части большой комнаты, максимально удаленной от входной двери. Это помещение надо оснастить следующим оборудованием:

1. Ламинарный бокс с вертикальной или горизонтальной подачей стерильного воздуха. Стерильность обеспечивается наличием фильтров, задерживающих частицы крупнее 0,3 мкм.

2. Инкубатор, в котором автоматически поддерживается влажность, температура и концентрация СО2 .

3. Низкоскоростная центрифуга с подвесными стаканами, желательно с охлаждением.

4. Обычный и инвертированный микроскопы с фазово-констрастным устройством.

5. Холодильник на +4 и на –200 С.

6. Водяная баня на +37 и +560 С.

Помимо этого в отдельном помещении желательно иметь морозильник на –700 С и сосуд Дьюара с жидким азотом для хранения клеток. Для получения гибридом нужно приобрести также специальную пластиковую посуду для культуры клеток: 96-луночные планшеты с плоским дном, 24-луночные планшеты, флаконы с площадью роста 25, 75 см2 и др., пластиковую посуду для проведения иммуноферментного и радиоиммунологического анализов, среды для культивирования, необходимые реактивы, сыворотку плода коровы (СПК).

Приготовление отдельных компонентов сред для культивирования. Основными средами, употребляемыми для получения гибридом, являются среда RPMI 1640 и среда Игла в модификации Дульбекко. Применяются и другие среды, в частности, среда Дульбекко в модификации Иксова. Среды выпускаются в виде готовых растворов, 10-кратных концентратов и сухих порошков. Лучшие результаты получаются при приготовлении сред в условиях лаборатории из сухих порошков, однако при этом важное значение имеет качество воды. Для приготовления сред необходима деионизированная и дважды перегнанная в кварцевой посуде вода.

Выбор экспериментального животного . Обычно для иммунизации используют мышей и крыс. Это связано с тем, что подходящие миеломные клетки мышей и крыс широко распространены и, кроме этого, не представляет сложностей выращивание полученных гибридом в организме этих животных.

Другие животных практически не используются.

При иммунизации животных иммунный ответ вырабатывается на все антигенные детерминанты всех компонентов вводимого материала. Это значительно осложняет отбор клонов, продуцирующих антитела к интересующей антигенной детерминанте, так как их доля может быть крайне незначительной. Поэтому по возможности для иммунизации применяют очищенные антигены, по крайней мере на последних этапах иммунизации. Одним из основных достоинств гибридомной техники и является как раз то обстоятельство, что специфические антитела против данного антигена можно получить, взяв для иммунизации неочищенный препарат антигена, и употребив впоследствии эти антитела для очистки антигена.

Способы иммунизации. Назначение процесса иммунизации состоит в том, чтобы увеличить долю клеток, продуцирующих антитела заданной специфичности, и перевести эти клетки в функциональное состояние, при котором они способны сливаться и образовывать антителообразующие гибридные клетки. Экспериментально установлено, что для гибридизации необходимы выделять селезеночные клетки животных через 3-4 суток после последнего введения антигена, то есть тогда, когда в лимфоидных органах много активно пролиферирующих клеток.

Конкретная схема иммунизации сильно зависит от природы антигена и его иммуногенности. Антигены клеточной поверхности являются сильными иммуногенами, тогда как большинство растворимых белков – слабые иммуногены. В последнем случае необходимо применять различные адъюванты, усиливающие иммунный ответ. Среди адъювантов наибольшее распространение получил полный адъювант Фрейнда (ПАФ). Помимо этого, используют введение антигена, преципитированного на квасцах, и введение вместе с антигеном убитых клеток Bordetella Pertussis . Обычно антиген вводят неоднократно, что необходимо для развития сильного иммунного ответа, хотя чрезмерная иммунизация может иметь обратный эффект – отмечено, что иногда у клеток гипериммунизированных животных снижается способность образовывать гибридомы. В некоторых случаях бывает достаточно и одной иммунизации.

mirznanii.com

10. Моноклональные антитела. Получение, применение.

Моноклональные антитела. Каждый В-лимфоцит и его потомки, образовавшиеся в ре­зультате пролиферации (т.е. клон), способны синтезировать антитела с паратопом строго определенной специфичности. Такие антитела получили название моноклональных. В природ­ных условиях макроорганизма получить моно­клональные антитела практически невозмож­но. Дело в том, что на одну и ту же антигенную детерминанту одновременно реагируют до 100 различных клонов В-лимфоцитов, незначи­тельно различающихся антигенной специфич­ностью рецепторов и, естественно, аффиннос­тью. Поэтому в результате иммунизации даже монодетерминантным антигеном мы всегда получаем поликлональные антитела.

Принципиально получение моноклональных антител выполнимо, если провести пред­варительную селекцию антителопродуцирующих клеток и их клонирование (т.е. выделение отдельных клонов в чистые культуры). Однако задача осложняется тем, что В-лимфоциты, как и другие эукариотические клетки, имеют ограниченную продолжительность жизни и число возможных митотических делений.

Проблема получения моноклональных ан­тител была успешно решена Д. Келлером и Ц. Милыптейном. Авторы получили гибридные клетки путем слияния иммун­ных В-лимфоцитов с миеломной (опухоле­вой) клеткой. Полученные гибриды обладали специфическими свойствами антителопродуцента и «бессмертием» раковотрансформированной клетки. Такой вид клеток полу­чил название гибридом. Гибридома хорошо размножается в искусственных питательных средах и в организме животных и в неогра­ниченном количестве вырабатывает антите­ла. В результате дальнейшей селекции были отобраны отдельные клоны гибридных кле­ток, обладавшие наивысшей продуктивнос­тью и наибольшей аффинностью специфи­ческих антител.

Гибридомы, продуцирующие моноклональные антитела, размножают или в аппаратах, приспособленных для выращивания культур клеток или же вводя их внутрибрюшинно особой линии (асцитным) мышам. В послед­нем случае моноклональные антитела накап­ливаются в асцитной жидкости, в которой размножаются гибридомы. Полученные как тем, так и другим способом моноклональные антитела подвергают очистке, стандартиза­ции и используют для создания на их основе диагностических препаратов.

Гибридомные моноклональные антитела нашли широкое применение при создании диагностических и лечебных иммунобиоло­гических препаратов.

11. Реакция преципитации. Механизм. Компоненты. Спосо­бы постановки. Применение.

Реакция преципитации (РП) - это формирова­ние и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количес­твах; избыток одного из них снижает уровень образования иммунного комплекса.

РП ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др. Широкое рас­пространение получили разновидности РП в полужидком геле агара или агарозы: двойная иммунодиффузия по Оухтерлони, радиальная иммунодиффузия, иммуноэлектрофорез и др.

Механизм. Проводится с прозрачными коллоид­ными растворимыми антигенами, экстрагированными из патоло­гического материала, объектов внешней среды или чистых культур бактерий. В реакции используют прозрачные диагности­ческие преципитирующие сыворотки с высокими титрами анти­тел. За титр преципитирующей сыворотки принимают то наибольшее разведение антигена, которое при взаимодействии с иммун­ной сывороткой вызывает образование видимого преципитата — помутнение.

Реакция кольцепреципитации ставится в узких пробирках (диаметр 0,5 см), в которые вносят по 0,2—0,3 мл преципитирующей сыворотки. Затем пастеровской пипеткой медленно наслаивают 0,1—0,2 мл раствора антигена. Пробирки осторожно переводят в вертикальное положение. Учет реакции производят через 1—2 мин. В случае положительной реакции на границе между сывороткой и исследуемым антигеном появляется пре­ципитат в виде белого кольца. В контрольных пробирках преци­питат не образуется.

studfiles.net

Гибридомная технология, метод получения моноклональных антител

Гибридо́ма — гибридная клеточная линия, полученная в результате слияния клеток двух видов: способных к образованию антител B-лимфоцитов, полученных из селезёнки иммунизированного животного (чаще всего мыши), и раковых клеток миеломы. Слияние клеток производится с помощью нарушающего мембраны агента, такого, как полиэтиленгликоль или вирус Сёндай. Поскольку раковые клетки миеломы «бессмертны», то есть способны делиться большое количество раз, после слияния и соответствующей селекции гибридома, производящая моноклональные антитела против антигена может поддерживаться долгое время.

Наиболее перспективным направлением является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования. В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы. Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система способна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с В-лимфоцитами из селезенки мыши, иммунизированной каким либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенного типа (рис. 4.5). Эти работы имели огромное значение и открыли новую эру в экспериментальной иммунологии.

В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом. Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными

опухолевыми клетками ( обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов – гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, проводят их отбор. Питательную среду с растущими гибридомами тестируют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли,

продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител. Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение (таблица 4.1). Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности.

Таким образом, работы по получению новых моноклональных антител в целях создания на их основе лекарственных и диагностических средств очень перспективны. Они позволят вывести практическую медицину на качественно новый уровень. Гибридомная технология стала прорывом в разработке препаратов для лечения злокачественных новообразований, вирусных, аутоиммунных и многих других заболеваний. Терапия с помощью МА эффективна, очень специфична, т.е. нацелена только на определенный патологический механизм, являющийся причиной заболевания, и, следовательно, сравнительно безопасна. Уже сегодня 20% разрабатываемых биофармацевтических препаратов являются продуктами гибридомной технологии. Всего в мире на различных стадиях разработки находится свыше 350 лекарственных средств, содержащих МА, 70 из них проходят клинические испытания.

mirznanii.com

Получение моноклональных антител

Дисциплина: Разное Тип работы: Курсовая Тема: Получение моноклональных антител

Министерство образования Российской Федерации

Самарский Государственный Университет

Реферат на тему:

ПОЛУЧЕНИЕ МОНОКЛОНАЛЬНЫХ АНТИТЕЛ

Выполнила студентка 542 Б группы

биологического факультета СамГУ

Миронова Ирина

Самара

2001

Введение

Для многих исследований, связанных с изучением биологических структур большую ценность представляют реагенты, способных специфически взаимодействовать с данной структурой.

Универсальным реагентом, обладающим указанным свойством, считается молекула иммуноглобулина. Несмотря на то, что иммуноглобулины, являясь антителами, взаимодействуют только с антигеном,

то есть с молекулой способной вызвать иммунный ответ, для большинства структур удается подобрать условия, при которых они становятся антигенами и индуцируют выработку комплиментарных

антител (например, при конъюгации с сильными иммуногенами). Именно этим объясняется большое распространение иммунологических методов, связанных с использованием антител, в различных

областях биологии и медицины.

Серьезную проблему при применении антисывороток для идентификации и количественного определения антигенов в различных областях исследований представляет неспецифическое связывание и

перекрестная реактивность антител.

История создания метода

Многие исследователи пытались отыскать способы получения антител с узкой специфичностью. Так, при определенных условиях иммунизации бактериальными полисахаридами удается получить

высокогомогенный аппарат антител с узкой специфичностью. Кроме того, возможно слияние плазмацитомы (опухоли, возникшей из антителообразующей клетки или ее предшественника) с клетками

селезенки иммунизированного животного, получив таким образом гибридные клетки (гибридомы), унаследовавшие от опухолевых клеток способность неограниченно размножаться, а от клеток

селезенки – синтезировать антитела предопределенной специфичности.

Предпосылками для возникновения метода получения гибридом, синтезирующих моноклональные антитела, были разработки двух методологических подходов:

У мышей довольно легко получить миеломы (плазмацитомы). Эти опухоли являются потомками одной клетки (то есть имеют моноклональное происхождение) и секретируют уникальные

иммуноглобулины, некоторые из которых могут взаимодействовать с известными антигенами. Опухоли индуцируют у животных путем внутрибрюшинного введения минеральных масел или инертного

твердого пластика. Для возникновения миелом большое значение имеет генетический статус животного, и только у двух линий инбредных мышей экспериментаторам удалось получить такие

опухоли.

Миеломные клетки мыши оказались чрезвычайно удобными для изучения биохимии продукции иммуноглобулинов и дали очень многое для понимания структуры, механизмов секреции и их функции.

Однако, миеломная система как источник антител к большинству антигенов не оправдала надежды исследователей – не удавалось иммунизировать животных, а затем получить мышиные миеломы,

продуцирующие антитела к иммунизирующие антигену. Из тысяч миеломных опухолей, индуцированных у мышей, лишь единичные вырабатывали иммуноглобулины, которые реагировали с известными

антигенами, что было обнаружено путем грубого скринирования с множеством потенциальных антигенов. Таким образом, миеломные белки оказывались с неизвестной антигенной специфичностью.

Другой предпосылкой возникновения метода получения гибридом явилась техника гибридизации соматических клеток, разработка которых широко проводилась после открытия феномена спонтанной

гибридизации. При слиянии плазматических мембран клеток образуются клетки с двумя или большим числом ядер – гетерокарионы. После первого деления ядра сливаются и образуется одно ядро с

набором хромосом от всех слившихся партнеров – образуется гибридная клетка. Низкую частоту образования гибридов можно было увеличить, использовав ряд агентов, вызывающих слияние: вирус

Сендай, лизолецитин, полиэтиленгликоль.

Даже при использовании агентов, повышающих слияние, частота образующихся гибридов крайне низка. Для их выделения необходимы селективные среды, позволяющие расти преимущественно

образовавшимся гибридам. В настоящее время разработано несколько принципов селекции гибридных клеток. Одним из наиболее распространенных является метод, основанный на применении

системы, содержащей гипоксантин, амидоптерин и тимидин (система ГАТ).

Селекция гибридных клеток основана на том, что в ГАТ среде родительские миеломные клетки погибают, а нормальные клетки селезенки не обладают способностью расти при данных условиях

культивирования, так что выживают и размножаются только гибридные клетки, унаследовавшие от родительских клеток способность размножаться и синтезировать специфические

иммуноглобулины.

Подготовительные этапы перед проведением слияния

Полностью процедура получения моноклональных антител включает в себя следующие этапы:

Обычно вся процедура от момента начала иммунизации до выделения антител занимает 3-4 месяца.

Организация работы и оборудование. Для работы по получению гибридом желательно выделить отдельное помещение. Эксперимент можно проводить и в части большой комнаты, максимально

удаленной от входной двери. Это помещение надо оснастить следующим оборудованием:

0 С.

0 С.

Помимо этого в отдельном помещении желательно иметь морозильник на –70

0 С и сосуд Дьюара с жидким азотом для хранения клеток. Для получения гибридом нужно приобрести также специальную пластиковую посуду для культуры клеток: 96-луночные планшеты

с плоским дном, 24-луночные планшеты, флаконы с площадью роста 25, 75 см

2 и др., пластиковую посуду для проведения иммуноферментного и радиоиммунологического анализов, среды для культивирования, необходимые реактивы, сыворотку плода коровы

(СПК).

Приготовление отдельных компонентов сред для культивирования. Основными средами, употребляемыми для получения гибридом, являются среда RPMI 1640 и среда Игла в модификации

Дульбекко. Применяются и другие среды, в частности, среда Дульбекко в модификации Иксова. Среды выпускаются в виде готовых растворов, 10-кратных концентратов и сухих порошков. Лучшие

результаты получаются при приготовлении сред в условиях лаборатории из сухих порошков, однако при этом важное значение имеет качество воды. Для приготовления сред необходима

деионизированная и дважды перегнанная в кварцевой посуде вода.

Выбор экспериментального животного. Обычно для иммунизации используют мышей и крыс. Это связано с тем, что подходящие миеломные клетки мышей и крыс широко распространены и, кроме

этого, не представляет сложностей выращивание полученных гибридом в организме этих животных.

Другие животных практически не используются.

При иммунизации животных иммунный ответ вырабатывается на все антигенные детерминанты всех компонентов вводимого материала. Это значительно осложняет отбор клонов, продуцирующих

антитела к интересующей антигенной детерминанте, так как их доля может быть крайне незначительной. Поэтому по возможности для иммунизации применяют очищенные антигены, по крайней мере

на последних этапах иммунизации. Одним из основных...

Забрать файл

Похожие материалы:

refland.ru


Смотрите также