Гибридомная технология получения моноклональных антител. Гибридомная технология получения моноклональных антител


Гибридомная технология получения моноклональных антител

Введение антигена (бактерий, вирусов и т. д.) вызывает обра­зование разнообразных антител против многих детерминант антигена. В 1975 г. Г. Кёлер и К. Милыптейн (лауреаты Нобе­левской премии) получили моноклональные антитела с помощью гибридомной технологии.

Моноклональные антитела — это иммуноглобулины, синтези­руемый одним клоном клеток. Моноклональное антитело связы­вается только с одной антигенной детерминантой на молекуле антигена.

Гибридомная технология — слияние с помощью полиэтиленгли-коля лимфоцитов селезенки предварительно иммунизированных организмов определенным антигеном с миеломными (раковыми) клетками, способными к бесконечной пролиферации (делению). Гибридные клетки селекционируют в среде ГАТ (среда, содержа­щая гипоксантин, аминоптерин и тимидин). Неслившиеся лим­фоциты погибают в любой тканевой культуре. Миеломные клетки на этой среде также погибают, так как они были дефектны по ГГФТ (гипоксантин-гуанозин-фосфорибозилтрансферазе). Отби­рают клоны клеток, синтезирующие необходимые антитела (рис. 28). Нужные клоны можно хранить в замороженном состоянии.

Таким образом, гибридомы представляют собой бессмертные клоны клеток, синтезирующие моноклональные антитела.

Получение и использование моноклональных антител — одно из существенных достижений современной иммунологии. С их помощью можно определить любое иммуногенное вещество. В медицине меченные изотопами или иным способом монокло­нальные антитела можно использовать для диагностики рака и определения локализации опухоли, для диагностики инфаркта миокарда. Получены моноклональные антитела к различным возбудителям: малярии, трипаносомозу, лейшманиозу, токсо-плазмозу и др. Ученые считают, что в самом ближайшем буду­щем моноклональные антитела займут доминирующее положе­ние в диагностике болезней. Для использования в терапии моно­клональные антитела можно соединять с лекарством (например, с токсическими веществами) благодаря специфичности антител они доносят это вещество непосредственно к раковым клеткам

Рис. 28. Получение моноклональных антител (но Милыптейну, 1982)

или патогенным микроорганизмам, что позволяет значительно повысить эффективность лечения. Можно использовать моно­клональные антитела (против Н — Y-антигена) для определения пола у крупного рогатого скота на предимплантационной стадии развития, а также для стандартизации методов типирования тканей при трансплантации органов, при изучении клеточных мем­бран (так были изучены антигены Т-лимфоцитов), для постро­ения антигенных карт вирусов, возбудителей болезней.

Лекция-15 эмбриогенетическая инженерия.

План: КЛОНИРОВАНИЕ ЭМБРИОНОВ МЛЕКОПИТАЮЩИХ

ХИМЕРНЫЕ ЖИВОТНЫЕ.

ТРАНСГЕННЫЕ ЖИВОТНЫЕ

Эмбриогенетическая инженерия — это активная перестройка генома животных путем вмешательства в их развитие на самых ранних стадиях онтогенеза. Перестройка генома — это рекон­струкция эмбрионов путем клонирования, слияния или непо­средственной инъекции в их ядра чужеродной ДНК. Однако получение эмбриональных клонов, химер или трансгенных жи­вотных возможно лишь в результате успешной трансплантации реконструированного эмбриона.

Трансплантация — метод ускоренного воспроизводства высо­копродуктивных животных путем получения и переноса одного или нескольких эмбрионов от высокоценных животных (доно­ров) менее ценным животным (реципиентам). Использование трансплантации позволяет получать от одной генетически цен­ной самки в десятки раз больше потомства.

Технология трансплантации опирается на крупные достиже­ния в области биологии размножения животных и включает следующие приемы: 1) гормональное вызывание суперовуляции; 2) осеменение доноров семенем производителей, оцененных по качеству потомства; 3) извлечение и оценку качества эмбрионов, сохранение и пересадку или криоконсервирование эмбрионов в жидком азоте, оттаивание и пересадку.

Трансплантацию эмбрионов применяют для следующих целей:

  1. размножения генетически ценных особей; с помощью этого метода может быть решен вопрос быстрого создания высокопро­ дуктивных линий и семейств, резистентных к болезням;

  2. получения идентичных животных путем разделения ранних эмбрионов. Это дает возможность изучить взаимодействие гено­ тип — среда, выяснить влияние наследственности на хозяйствен­ но полезные признаки. Технология разделения эмбрионов позво­ ляет одну половину полученной бластоцисты подвергнуть глубо­ кому охлаждению, а из другой вырастить животное. Если производитель (из одной половины бластоцисты) окажется гене­ тически ценным, то имеется возможность воспроизвести его копию через определенный промежуток времени;

  3. сохранения мутантных генов, малых популяций и генофон­ да пород;

  4. получения потомков от бесплодных, но генетически цен­ ных по генотипу животных;

5) выявления вредных рецессивных генов и хромосомных аномалий;

  1. повышения устойчивости животных к болезням;

  2. борьбы с болезнями путем замены импорта и экспорта животных на импорт и экспорт криоконсервированных эмбрио­ нов;

  3. акклиматизации импортных животных иностранных пород;

  4. определения пола эмбриона и получения животных опреде­ ленного пола;

  1. межвидовых пересадок;

  2. получения химерных животных, которые развиваются из ранних эмбрионов, сконструированных из бластомеров разных животных.

studfiles.net

Гибридомная технология, метод получения моноклональных антител - Реферат

Гибридо́ма — гибридная клеточная линия, полученная в результате слияния клеток двух видов: способных к образованию антител B-лимфоцитов, полученных из селезёнки иммунизированного животного (чаще всего мыши), и раковых клеток миеломы. Слияние клеток производится с помощью нарушающего мембраны агента, такого, как полиэтиленгликоль или вирус Сёндай. Поскольку раковые клетки миеломы «бессмертны», то есть способны делиться большое количество раз, после слияния и соответствующей селекции гибридома, производящая моноклональные антитела против антигена может поддерживаться долгое время.

Наиболее перспективным направлением является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования. В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы. Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система способна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с В-лимфоцитами из селезенки мыши, иммунизированной каким либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенн

ого типа (рис. 4.5). Эти работы имели огромное значение и открыли новую эру в экспериментальной иммунологии.

В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом. Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными

опухолевыми клетками ( обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов – гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, проводят их отбор. Питательную среду с растущими гибридомами тестируют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли,

продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител. Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение (таблица 4.1). Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности.

Таким образом, работы по получению новых моноклональных антител в целях создания на их основе лекарственных и диагностических средств очень перспективны. Они позволят вывести практическую медицину на качественно новый уровень. Гибридомная технология стала прорывом в разработке препаратов для лечения злокачественных новообразований, вирусных, аутоиммунных и многих других заболеваний. Терапия с помощью МА эффективна, очень специфична, т.е. нацелена только на определенный патологический механизм, являющийся причиной заболевания, и, следовательно, сравнительно безопасна. Уже сегодня 20% разрабатываемых биофармацевтических препаратов являются продуктами гибридомной технологии. Всего в мире на различных стадиях разработки находится свыше 350 лекарственных средств, содержащих МА, 70 из них проходят клинические испытания.

www.litsoch.ru

Гибридомная технология, метод получения моноклональных антител

Гибридо́ма — гибридная клеточная линия, полученная в результате слияния клеток двух видов: способных к образованию антител B-лимфоцитов, полученных из селезёнки иммунизированного животного (чаще всего мыши), и раковых клеток миеломы. Слияние клеток производится с помощью нарушающего мембраны агента, такого, как полиэтиленгликоль или вирус Сёндай. Поскольку раковые клетки миеломы «бессмертны», то есть способны делиться большое количество раз, после слияния и соответствующей селекции гибридома, производящая моноклональные антитела против антигена может поддерживаться долгое время.

Наиболее перспективным направлением является гибридомная технология. Гибридные клетки (гибридомы) образуются в результате слияния клеток с различными генетическими программами, например, нормальных дифференцированных и трансформированных клеток. Блестящим примером достижения данной технологии являются гибридомы, полученные в результате слияния нормальных лимфоцитов и миеломных клеток. Эти гибридные клетки обладают способностью к синтезу специфических антител, а также к неограниченному росту в процессе культивирования. В отличие от традиционной техники получения антител, гибридомная техника впервые позволила получить моноклональные антитела (антитела, продуцируемые потомками одной-единственной клетки). Моноклональные антитела высокоспецифичны, они направлены против одной антигенной детерминанты. Возможно получение нескольких моноклональных антител на разные антигенные детерминанты, в том числе сложные макромолекулы. Моноклональные антитела в промышленных масштабах получены сравнительно недавно. Как известно, нормальная иммунная система способна в ответ на чужеродные агенты (антигены) вырабатывать до миллиона различных видов антител, а злокачественная клетка синтезирует только антитела одного типа. Миеломные клетки быстро размножаются. Поэтому культуру, полученную от единственной миеломной клетки, можно поддерживать очень долго. Однако невозможно заставить миеломные клетки вырабатывать антитела к определенному антигену. Эту проблему удалось решить в 1975 г. Цезарю Мильштейну. У сотрудников Медицинской научно-исследовательской лаборатории молекулярной биологии в Кембридже возникла идея слияния клеток мышиной миеломы с В-лимфоцитами из селезенки мыши, иммунизированной каким либо специфическим антигеном. Образующиеся в результате слияния гибридные клетки приобретают свойства обеих родительских клеток: бессмертие и способность секретировать огромное количество какого-либо одного антитела определенного типа (рис. 4.5). Эти работы имели огромное значение и открыли новую эру в экспериментальной иммунологии.

В 1980 г. Карло М. Кроче с сотрудниками (США) удалось создать стабильную, продуцирующую антигены, внутривидовую человеческую гибридому путем слияния В лимфоцитов миеломного больного с периферическими лимфоцитами от больного с подострым панэнцефалитом. Основные этапы получения гибридомной техники следующие. Мышей иммунизируют антигеном, после этого из селезенки выделяют спленоциты, которые в присутствии полиэтиленгликоля сливают с дефектными

опухолевыми клетками ( обычно дефектными по ферментам запасного пути биосинтеза нуклеотидов – гипоксантина или тиамина). Далее на селективной среде, позволяющей размножаться только гибридным клеткам, проводят их отбор. Питательную среду с растущими гибридомами тестируют на присутствие антител. Положительные культуры отбирают и клонируют. Клоны инъецируют животным с целью образования опухоли,

продуцирующей антитела, либо наращивают их в культуре. Асцитная жидкость мыши может содержать до 10–30 мг/мл моноклональных антител. Гибридомы можно хранить в замороженном состоянии, и в любое время вводить дозу такого клона в животное той линии, от которой получены клетки для слияния. В настоящее время созданы банки моноклональных антител. Антитела применяют в разнообразных диагностических и терапевтических целях, включая противораковое лечение (таблица 4.1). Эффективным способом применения моноклональных антител в терапии является связывание их с цитоксическими ядами. Антитела, конъюгированные с ядами, отслеживают и уничтожают в макроорганизме раковые клетки определенной специфичности.

Таким образом, работы по получению новых моноклональных антител в целях создания на их основе лекарственных и диагностических средств очень перспективны. Они позволят вывести практическую медицину на качественно новый уровень. Гибридомная технология стала прорывом в разработке препаратов для лечения злокачественных новообразований, вирусных, аутоиммунных и многих других заболеваний. Терапия с помощью МА эффективна, очень специфична, т.е. нацелена только на определенный патологический механизм, являющийся причиной заболевания, и, следовательно, сравнительно безопасна. Уже сегодня 20% разрабатываемых биофармацевтических препаратов являются продуктами гибридомной технологии. Всего в мире на различных стадиях разработки находится свыше 350 лекарственных средств, содержащих МА, 70 из них проходят клинические испытания.

doc4web.ru


Смотрите также