Большая Медицинская Энциклопедия. Флюоресцирующие антитела


МФА (Метод флуоресцирующих антител)

Метод флуоресцирующих антител (МФА) (иначе реакция иммунофлуоресценции – РИФ) используется для обнаружения антигенов в биологических объектах (микроорганизмах, жидкостях) с помощью антител, помеченных флуоресцирующими красителями.

Первый люминесцентный микроскоп с кварцевой оптикой был сконструирован еще в 1908г. Келером и Зидентопфом. Сам метод иммунофлуоресценции был изобретен в 1942г.  А. Кунсом, синтезировавшим органический краситель флуоресцеин-4-изоцианат, и  разработавшим методику его конъюгирования с сывороточными белками.

Различают прямой (пМФА) или  реакция  прямой иммунофлуоресценции  (РПИФ), разработан. А Кунсом и Каплан. Непрямой (нМФА) метод флуоресцирующих антител или  реакция непрямой иммунофлуоресценции  (РнИФ), разработан Кунсом и Уиллером и, как разновидность последнего нМФА с комплементом.

ПМФА  используется с  целью выявления антигенов в биологических пробах на основе известных сывороток.

Методика пМФА. На предметном стекле фиксируется мазок или отпечаток ткани, содержащий антиген. На этот мазок наносится флуоресцирующая сыворотка, содержащая антитела против предполагаемого антигена. В качестве контроля используется гетерологичная флуоресцирующая сыворотка. В течение 30 мин.мазки с нанесенной сывороткой выдерживают во влажной камере при +37°С затем их промывают, удаляя лишний флуоресцин. Сыворотка, связываясь с антителом, образует комплекс, включающий флуоресцин, как опознавательный маркер. Оценка результатов осуществляется люминесцентным микроскопированием  по уровню яркости зеленого свечения, описывается в крестах.

“+++++” – яркая, сверкающая флуоресценция;

“+++” – отчетливо выраженная, достаточно яркая флуоресценция;

“++” -  флуоресценция  слабая, но морфология   клеток   и   цвет  люминесценции выявляется достаточно четко;

“+” -  флуоресценция  очень   слабая,   морфология   клеток различима плохо;

“-” – флуоресценция отсутствует.

НМФА используется с целью выявления специфических антител в биологических пробах.

Методика нМФА. При проведении нМФА на известный, фиксированный на стекле антиген, наносят испытуемую сыворотку и в течение 30 мин. мазки с нанесенной сывороткой выдерживают во влажной камере при +37°С. Затем наносят антивидовой (соответствующий     испытуемой  сыворотке) люминесцирующий  гамма-глобулин и  вновь  выдерживают во влажной камере. Далее препараты промывают, высушивают и исследуют люминесцентной микроскопией. Титром сыворотки считают то наибольшее ее разведение, которое обусловливающее свечение на “++”,  при наличии свечения на “+++” или “++++” в предыдущем разведении.

Модификацией нМФА, является нМФА с комплементом. В этом случае к сыворотке, нанесенной на антиген, добавляется комплемент, а к нему уже антикомплементарная люминесцирующая сыворотка.

Преимуществом непрямых методов является необходимость наличия только видовых люминесцирующих сывороток. При этом реакция становится более громоздкой из-за большого количества необходимых контролей. К недостаткам всех видов РИФ относится ограниченная чувствительность из-за наличия возможных перекрестных реакций между близкими по антигенному составу объектами и неспецифическая флуоресценция вследствие адсорбции флуоресцирующей сыворотки на различных элементах препарата.

РИФ применяется в настоящее время для идентификации возбудителей различных вирусных инфекций, бешенства,  колиэнтеритов, дизентерии, гепатита, брюшного тифа и паратифов, холеры, коклюша, чумы, туляремии, бруцеллеза, сибирской язвы, сифилиса, токсоплазмоза, хламидиоза, и др.

Для лабораторных исследований используются коммерческие стандартные конъюгаты, содержащие глобулины к исследуемым антигенам.

Список литературы:

1. Р. Кирк Д. Бонагура Современный курс ветеринарной медицины Кирка. М., “Аквариум” 2005г.

2. Х.Г. Ниманд  П.Ф. Сутер Болезни собак. М., “Аквариум” 1998г.

3. Бусыгин К.Ф. Люминесцентная диагностика инфекционных болезней животных М., “Колос” 1975г.

4.Сюрин В.М Самуйленко А.Я. и др. Вирусные болезни животных. М., ВНИТИБП 2004г.

5. Ветеринарная микробиология и иммунология под ред. Проф. Н.А.Радчука М., “Агропромиздат” 1991г.

Еще интересные статьи

vetl.ru

ИММУНОФЛЮОРЕСЦЕНЦИЯ — Большая Медицинская Энциклопедия

ИММУНОФЛЮОРЕСЦЕНЦИЯ (лат. immunis свободный, избавленный от чего-либо + флюоресценция) — люминесценция в ультрафиолетовом свете микроскопа биологического объекта, содержащего изучаемый антиген после его предварительной обработки специфическими антителами, меченными флюорохромом.

Метод микроскопии, основанный на явлении (процессе) И., носит название метода Кунса, метода И., метода люминесцирующих антител (сывороток) и применяется в практике как экспресс-метод при микробиол. диагностике инфекционных заболеваний. Его применяют также при изучении патогенеза инфекционных заболеваний, механизма антителогенеза, антигенного анализа биол, объектов.

Иммунофлюоресцентный метод является универсальным иммунохим. методом, сочетающим в себе достаточно точный морфол, анализ со специфичностью и высокой разрешающей способностью иммунол, методов. Он основан на использовании явления люминесценции для выявления реакции антиген — антитело, происходящей на поверхности клеток или на срезах ткани.

Большое преимущество метода И. заключается в его простоте, высокой чувствительности, превосходящей некоторые другие серол, методы, а также в быстроте получения результатов. Можно, вероятно, локализовать и идентифицировать любое вещество, обладающее антигенными (гаптенными) свойствами, независимо от его природы и функции. Кроме того, метод И. вводит в круг исследований нерастворимые антигены тканей, которые недоступны изучению многими иммунол, методами, в частности иммунодиффузионными .

Метод И. был предложен в 1942 г. Кунсом (A. Coons) с соавторами и получил дальнейшее развитие в 50-х гг. после синтеза самого лучшего из существующих флюорохромов — изотиоцианата флюоресцеина (ФИТЦ). В эти же годы в СССР были начаты исследования по использованию этого метода и его совершенствованию.

Успех метода И. во многом зависит от качества люминесцирующих антител (сывороток), которые получают путем хим. реакции между специфическими антителами, содержащимися в иммунной сыворотке, и флюоресцирующим красителем — флюорохромом (см.). Полученный продукт реакции называют конъюгатом. В ряде случаев приготовление специфичных и активных конъюгатов — трудная задача. Обычно с флюоресцирующими красителями конъюгируют не цельные иммунные сыворотки, а фракции сывороточных белков, содержащих антитела. Причем чем лучше очистка от балластных белков, тем более качественный конъюгат можно получить впоследствии. Наилучшие результаты дает использование для метки препаратов чистых антител, но это, к сожалению, не всегда возможно. Качество конъюгата определяется также чистотой и активностью красителя, его количеством при метке, концентрацией белка и антител, величиной pH при метке, временем и температурой конъюгации, а также степенью очистки от балластных белков и избытка красителя и наличием гетеро логичных и нормальных антител.

Флюорохромы — это такие красители, которые способны поглощать свет и излучать его через короткий промежуток времени (10-6—10-9 сек.). Интенсивность флюоресценции пропорциональна интенсивности возбуждающего излучения, и при малых концентрациях вещества возможно количественно определить флюоресцирующее вещество на микроскопическом или цитол, препарате.

К флюорохромам, предназначенным для метки специфического белка, предъявляются следующие основные требования: цвет их флюоресценции должен отличаться от аутофлюоресценции объекта и контрастировать с фоном; они должны обладать высокой интенсивностью флюоресценции после присоединения к белку и не должны существенно изменять физ.-хим. и серол, свойства антител.

В практике используют флюорохромы, имеющие желто-зеленую, желтую и красную люминесценцию. Кроме ФИТЦ, применяют сульфохлорид родамина 200В (PCX), сульфофторид родамина 200В (РСФ), тетраметилродамин изотиоцианат (МРИТЦ), дихлортриазиниламинофлюоресцеин (ДХТАФ) и др.

Конъюгация белка с флюорохромом является хим. реакцией, в результате чего образуется новое соединение, в к-ром краситель присоединен к белку ковалентной связью. В реакции участвуют в основном ε-аминогруппы лизина и концевые аминогруппы белковой молекулы.

Метод И. применяется в трех основных модификациях. При прямом методе [Кунс, Каплан (М. Kaplan), 1950] на препарат, содержащий искомый антиген, наносят специфическую люминесцирующую сыворотку (антитело). После реакции препарат промывают и изучают под люминесцентным микроскопом. Преимуществом этого метода является его одноэтапность и использование небольшого количества контролей реакции.

При непрямом методе [Уэллер (Т. Weller), Кунс, 1954] препарат, содержащий искомый антиген, обрабатывают специфической немеченой сывороткой, несвязавшиеся белки отмывают и наносят люминесцирующую сыворотку к глобулинам немеченой сыворотки. В этом случае в качестве антигенов выступают связанные препаратом антитела первой сыворотки — немеченой. Преимуществом данной модификации является большая чувствительность, чем у прямого метода, и возможность использования ограниченного набора люминесцирующих антител.

Непрямой метод с комплементом [Гольдвассер, Шепард (В. Goldwasser, С. Shepard), 1958] является трехэтапным. Этот вариант заключается в использовании меченой антикомплементарной сыворотки, которая присоединяется к комплементу комплекса антиген — антитело. В такой постановке меченая сыворотка оказывается еще более универсальной.

К. А. Лебедевым с соавторами (1971) описана возможность проведения непрямого метода с использованием двух люминесцирующих сывороток (как антител против выявляемого антигена, так и антител против иммуноглобулинов того вида животных, от которых получена первая специфическая сыворотка).

Прямой метод выявления антител с помощью меченого антигена впервые применил Меллорс (В. Mellors) с соавт, в 1959 г. для доказательства присутствия ревматоидного фактора в определенных клетках организма. Этот вариант метода имеет ограниченное применение.

Во всех вариантах Иммунохим, сущность метода остается неизменной: локализация антигена в препарате обнаруживается по специфической флюоресценции в месте реакции антиген — антитело.

Методика приготовления препаратов различна и зависит от типа исследуемого препарата. Изучению подвергают мазки, мазки-отпечатки из органов, срезы органов, культуру ткани и пр. Для каждого антигена применяют свои фиксаторы. Препараты изучают под люминесцентным микроскопом (МЛ-2, МЛД-1, ЛЮМAM-2 и др.).

В связи с тем что в реакции И. участвует много компонентов, оценка надежности и точности результатов является обязательной частью исследования независимо от природы антигена, свойств и характеристики антител. Поэтому проводят контроль иммунол, специфичности наблюдаемого на препарате свечения и последовательно убеждаются в специфичности меченой сыворотки, качестве ее очистки, доказывают иммунол. характер обнаруживаемого свечения, проводят контроль фонового свечения с нормальной сывороткой, убеждаются в отсутствии реакции за счет антител к посторонним веществам и определяют иммунол, специфичность наблюдаемой реакции. Только после этого делают заключение о специфичности наблюдаемой реакции.

С целью повышения специфичности непрямого метода И. при выявлении тканевых антигенов применяют в качестве реактива меченые чистые антитела или конъюгаты с высоким титром антител, адсорбированные предварительно тканевыми порошками либо гомогенатами, не содержащими антигена, родственного специфическому антителу.

При выявлении бактерий, вирусов, риккетсий, простейших пользуются методами контрастирования неспецифического свечения. С этой целью используют бычий (или иной) альбумин, меченный родамином, синьку Эванса, конго красный и некоторые диазокрасители. При использовании метода контрастирования создают люминесцирующий фон, по цвету контрастирующий со специфическим свечением изучаемого объекта.

Рис. 1. Бактерии сибирской язвы, обработанные люминесцирующей сибиреязвенной сывороткой. Рис. 2. Энтеропатогенные бактерии Е. coli 0-145 (красного цвета) и 0-55 (зеленого цвета), обработанные соответственно двумя специфическими люминесцирующими сыворотками с различной по цвету флюоресценцией. Рис. 3. Культура ткани почки эмбриона овцы, инфицированная вирусом клещевого энцефалита. Обработка смесью специфической антисыворотки, меченной ФИТЦ, с бычьим альбумином, меченным родамином. О накоплении вируса свидетельствует зеленая флюоресценция в цитоплазме, которая отчетливо выявляется на фоне неспецифического желто-оранжево-бурого свечения остальных участков клетки.

Возможность определения и дифференцировки искомого антигена в смеси с другими антигенами позволила создать ускоренные диагностические методы выявления возбудителей инфекционных болезней. Метод И. используется для определения локализации и идентификации различных корпускулярных антигенов (простейшие, бактерии, риккетсии, вирусы) в чистых и смешанных культурах (цветн. рис. 1—3), в культуре клеток, в препаратах-отпечатках, срезах органов и тканей, патол, материале от больных. Чувствительность метода при исследовании мазков из взвеси бактерий — в пределах 104—5*104 клеток в 1 мл. Он позволяет обнаружить возбудителей тех инфекций, лабораторная диагностика которых основывается на изучении антигенных свойств возбудителей (вирусные заболевания, риккетсиозы, колиэнтериты). Метод И. эффективен при обнаружении возбудителей (чумы, туляремии, сальмонеллезов и др.) в крови человека, в органах и тканях животных (см. Идентификация вирусов, Идентификация микробов).

Метод И. широко используется в серодиагностике сифилиса и иммунопатологических состояний. При обследовании больных с заболеваниями соединительной ткани он используется для обнаружения антинуклеарных факторов, антикардиальных антител, иммуноглобулиновых рецепторов клетки и для выявления иммунол, факторов в участках поврежденной ткани.

Особый интерес представляет изучение антигенов опухолевых клеток, которые имеют поверхностно локализованные специфические антигены, отсутствующие в нормальных клетках. Изучению опухолевых антигенов, их роли в процессе малигнизации клетки и во взаимоотношениях опухоли и хозяина посвящено много исследований, использующих метод И.

С помощью метода И. проводится также изучение генетических маркеров иммуноглобулинов человека.

См. также Люминесценция.

Библиография: Гольдин Р. Б. и др. Иммунолюминесценция в медицине, М., 1977; Зубжицкий Ю. Н. Метод люминесцентной микроскопии в микробиологии, вирусологии и иммунологии, Л., 1964, библиогр.; Иммунохимический анализ, под ред. Л. А. Зильбера, с. 202, М., 1968; Левина E. Н. и д р. Люминесцирую-щие антитела (в изучении патогенных микроорганизмов), М., 1972, библиогр.; Михайлов И. Ф. и Дьяков С. И. Люминесцентная микроскопия, М., 1961, библиогр.; Goons А. Н. а. о. Demonstration of pneumococcal antigen in tissues by use of fluorescent antibody, J. Immunol., v. 45, p. 159, 1942; G o 1 d m a n M. Fluorescent antibody methods, N. Y.— L., 1968, bibliogr.; Kawamura A. Fluorescent antibody techniques and their applications, Tokyo, 1969; Nairn R.G. Fluorescent protein tracing-, Edinburgh, 1964; Wagner M. Fluoreszierende Anti-korper und ihre Anwendung in der Mikro-biologie, Jena, 1967. Bibliogr.

К. Л. Шаханина

xn--90aw5c.xn--c1avg

Метод флуоресцирующих антител Википедия

Иммунофлуоресцентный анализ (МФА — метод флуоресцирующих антител, иммунофлуоресценция) (англ. Immunofluorescence) — набор иммунологических методов для качественного и количественного определения поверхностных и внутриклеточных антигенов в образцах клеточных суспензий (культур клеток, бактерий, микоплазм, риккетсий, вирусов), образцов крови, костного мозга, альвеолярных смывов, тонких тканевых срезов. Метод позволяет детально анализировать биологические образцы на присутствие определенных антигенных детерминант, характерных для определенных возбудителей или заболеваний, проводить количественную оценку как поверхностных так и внутриклеточных белков и рецепторов. Исследование и оценка может выполняться вручную при помощи флюоресцентного микроскопа или автоматизировано с использованием проточного цитометра (flow cytometer) или микрочипового цитометра (сhip cytometer). Возможно применение конфокального микроскопа и роботизированного флюоресцентного микроскопа (в том числе совмещенных с проточным цитометром) в сочетании с программной системой обработки изображений. Имеющиеся в настоящее время автоматизированные технологии позволяют анализировать в одном образце примерно 50 различных антигенов с использованием набора различных флюоресцентных маркеров в формате высокоинформативной микроскопии и цитометрии (методы носят названия high-content imaging, high-content cytometry, high-content screening) и примерно вдвое меньшем максимальным набором антигенов с использованием современной проточной цитометрии или конфокальной микроскопии. Основными практическими приложениями являются онкология, микробиология, клеточная биология, генетика, фармакология и др.

Сущность и классификация метода

Сущность метода заключается в визуализации антигена специфическими антителами с флуоресцентными маркерами. Метод конъюгации глобулинов с органическими флюорохромами разработан в 1942 году А. Кунсом (англ.)русск..[1] В настоящее время метод использует как антитела к различным антигенам, так и специфические красители к ДНК (к примеру DAPI), РНК (к примеру Sybr Green II), липидам и белкам.

В базовой МФА методике различают прямой метод, разработанный А. Кунсом и Мелвином Капланом,[2] и непрямой, разработанный А. Кунсом и Уиллером в первоначальном варианте непрямого МФА с комплементом.

При прямом методе (пМФА) на исследуемый препарат или в суспензию клеток наносят раствор прямо меченых флюоресцентным красителем антител. Образование комплекса антиген-антитело обнаруживается флюоресцентным сигналом в виде свечения разной степени интенсивности и четкости.

При непрямом методе (нМФА) на препарат наносят антитела против искомых антигенов (т. н. «первые» антитела), а затем видоспецифичные «вторые» антитела против «первых» антител, что позволяет избежать неспецифических реакций. При этом только вторые антитела коньюгированны с флюоресцентным красителем. К примеру, если при исследовании в качестве «первых» антител используются мышиные антитела — mouse IgG, то в качестве «вторых» используются антивидовые anti-mouse IgG коньюгированные с флюоресцентным красителем. Комплекс антиген-антитело дает флюоресцентное окрашивание только после связывания со «вторым» антителом.

Непрямые методы требуют наличия только антиглобулиновых видовых сывороток с флюорохромами, но при этом необходимо большое количество тестовых контролей. При постановке прямым методом делается только один контроль, хотя в более ранних версиях метода требовалось множество моноспецифических сывороток. Долгое время недостатками прямых видов МФА являлись ограниченная чувствительность из-за наличия возможных перекрестных реакций между близкими по антигенному составу объектами и неспецифическая флуоресценция вследствие адсорбции флуоресцирующих глобулинов на различных элементах препарата. В настоящее время используются коммерческие стандартные конъюгаты, содержащие иммуноглобулины к исследуемым антигенам. Использование биоинженерных иммуноглобулинов и высокая степень очистки антител позволили практически свести на нет неспецифические реакции, что сделало возможным дальнейшее технологическое развитие метода.

Поскольку прямой метод в настоящее время позволяет избежать неспецифических реакций, автоматизированные методики преимущественно используют прямой метод иммунофлуоресценции.

Результаты ручной микроскопической оценки описываются в так называемых «крестах» (от одного + до четырёх ++++) — субъективная градация степени выраженности реакции глазом исследователя. В автоматизированных методах в качестве детектора используются фотоумножители или высокочувствительные флуоресцентные фотокамеры, что позволяет регистрировать сигнал с большой точностью и дает значение относительного уровня флюоресценции (relative fluorescence ratio) в широком диапазоне шкалы. Абсолютное значение высчитывается с помощью контролей или антигенов с известным постоянным содержанием в образце. При использовании автоматизированных методов обработка данных осуществляется специализированными программами для обработки изображений и анализа цитометрических данных.

Значение и перспективы метода

Метод имеет решающее значение в ранней диагностике и лечении онкологических заболеваний (иммуногистохимия, онкогематология), диагностике инфекционных заболеваний (например определение CD4+ клеток при ВИЧ) и наследственных синдромов. Интенсивно развиваются автоматизированные методы, среди которых направления высокоинформативной микроскопии (high content imaging) и высокоинформативной цитометрии(high content cytometry),параллельно развивающиеся с 90х годов комбинированные методики цитометрии-микроскопии (цитометр-микроскоп), а также методы микрочиповой цитометрии с плазмонной голографией [3] в которых отдельные антитела метятся наночастицами.

Примечания

  1. ↑ A. H. Coons, H. J. Creech, R. N. Jones, E. Berliner (нем.)русск., The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody, J. Immunol. 45, 1942, pp. 159—170
  2. ↑ A. H. Coons, M. H. Kaplan, Localization of antigen in tissue cells. II. improvements in a method for the detection of antigen by means of fluorescent antibody, J. Exp. Med., 91(1), pp. 1-13
  3. ↑ On-Chip Cytometry using Plasmonic Nanoparticle Enhanced Lensfree Holography : Scientific Reports : Nature Publishing Group

wikiredia.ru

Реакция иммунной флюоресценции (риф)

Реакция основана на том, что иммунные сыворотки обрабатывают флюорохромами (ФИТЦ), которые соединяются с антителами. Сыворотки при этом не теряют своей иммунной специфичности. При взаимодействии полученной люминесцентной сыворотки с соответствующим антигеном образуется специфический светящийся комплекс, легко видимый в люминесцентном микроскопе.

Различные иммунофлюоресцентные сыворотки могут быть использованы для прямого и непрямого метода иммунофлюоресценции. При прямом методе специфические флюоресцирующие иммунные сыворотки готовят для каждого микроба путем иммунизации кролика убитой культурой возбудителя, затем иммунную сыворотку кролика соединяют с флюорохромом (изоционат или изо-тиоционат флюоресцеина). Метод применяется для экспресс-диагностики с целью обнаружения бактериальных или вирусных антигенов.

Непрямой метод предусматривает использование диагностической иммунной не флюоресцирующей сыворотки (иммунизированного кролика или больного человека) и флюоресцирующей сыворотки, имеющей антитела против видовых глобулинов диагностической сыворотки.

Работа № 3

Иммуноферментный анализ (ифа)

Широкое применение находит твердофазный иммуноферментный анализ (ИФА). Он основан на том, что белки прочно адсорбируются на пластинках, например из поливинилхлорида. Один из наиболее распространенных на практике вариантов ИФА основан на использовании меченных ферментом специфических антител той же специфичности. К носителю с иммобилизованными антителами добавляют раствор с анализируемым антигеном. В процессе инкубации на твердой фазе образуются специфические комплексы антиген-антитело. Затем носитель отмывают от не связавшихся компонентов и добавляют гомологичные антитела, меченные ферментом, которые связываются со свободными валентностями антигена в составе комплексов. После вторичной инкубации и удаления избытка этих меченных ферментом антител определяют ферментативную активность на носителе, величина которой будет пропорциональна начальной концентрации исследуемого антигена.

При другом варианте ИФА к иммобилизованному антигену добавляют исследуемую сыворотку. После инкубации и удаления не связавшихся компонентов с помощью меченных ферментом антиглобулиновых антител выявляют специфические иммунокомплексы. Данная схема является одной из наиболее распространенных при постановке ИФА.

*

+

Специфические Исследуемый материал- Специфические антитела Субстрат

антитела возбудитель с пероксидазой для пероксидазы

*

+

Исследуемая АГС, меченая

сыворотка пероксидазой Субстрат для

Специфический пероксидазы

антиген

Контроль:

позитивный - иммунная сыворотка, меченная пероксидазой + субстрат - 2 лунки;

негативный - нормальная сыворотка + субстрат - 2 лунки.

studfiles.net

Метод флуоресцирующих антител

Прямой МФА: взаимодействие специфических АГ и AT приводит к образованию комплекса АГ+АТ, выявляемого по флуоресцентной метке одного из компонентов в люминесцентном микроскопе.

Техника постановки реакции. На тщательно обезжиренное предметное стекло наносят каплю исследуемого материала и растирают бактериологической петлей для получения тонкого мазка. Из органов и тканей животных и секционного материала от людей делают, по возможности, тонкие мазки-отпечатки. Мазки подсушивают на воздухе и фиксируют 30 мин в этаноле, либо смеси Никифорова или охлажденном ацетоне. После фиксации препараты вновь подсушивают на воздухе.

Сухую люминесцирующую сыворотку растворяют в указанном на этикетке ампулы объеме дистиллированной воды. Непосредственно перед окраской препаратов люминесцирующую сыворотку разводят ЗФР до рабочего разведения (указано на этикетке ампулы), которое предварительно перепроверяют. Для этого микроскопируют мазки из эталонных культур микроорганизмов (диагностикумов), окрашенных люм. сывороткой, взятой в разных разведениях (обязательно на 1-2 разведения выше и ниже рабочего титра, указанного на этикетке). Максимальное разведение сыворотки, которое обеспечивает яркое (на 4+ и 3+) флуоресцентное окрашивание микробных клеток, называют ее красящим титром. В качестве рабочего разведения сыворотки, используемого для окрашивания исследуемых препаратов, применяют удвоенный красящий титр. Например, если красящий титр сыворотки оказался 1:32, то ее рабочее разведение будет 1:16.

На фиксированный мазок наносят 1-2 капли люминесцирующей сыворотки в рабочем разведении. Препарат помещают во влажную камеру (чашку Петри, кювету с крышкой с увлажненной фильтровальной бумагой, ватой) при 37 °С на 30 мин или при комнатной температуре на 30-40 мин. Затем препарат промывают в 3 сменах ЗФР в течение 5-10 мин с последующим ополаскиванием в дистиллированной или проточной водопроводной воде в течение 1-2 мин. Препараты высушивают на воздухе в вертикальном положении, не применяя фильтровальную бумагу.

Учет и оценка результатов. Учет результатов проводят визуально на основе выявления морфологических особенностей и локализации возбудителя, а также оценки интенсивности и специфичности (структуры) его свечения. Оценку интенсивности специфической флуоресценции объекта проводят с учетом ее структурных особенностей по следующей шкале: ++++ - яркая сверкающая флуоресценция изумрудно-зеленого цвета, четко выявляются морфологические особенности микроорганизма, вокруг корпускулярных агентов может наблюдаться ярко светящийся ободок; +++ - яркая флуоресценция зеленого цвета, морфологические особенности микроорганизма выявляются достаточно отчетливо, нередко хорошо видны периферические ободки; ++ - слабая флуоресценция желтовато-зеленого цвета, морфологические особенности микроорганизмов выявляются еще достаточно четко, периферические ободки почти не видны; + - очень слабая флуоресценция неопределенного цвета, микроорганизмы различаются с трудом; - -флуоресценция объекта отсутствует.

Положительным результатом считается люминесценция клеток на 4+ и 3+ при наличии не менее 3-5 специфически светящихся клеток в препарате.

Прямой МФА для специфической индикации ПБА:

Приготовление мазков. На тщательно обезжиренное предметное стекло наносят каплю исследуемого материала и растирают бактериологической петлей для получения тонкого мазка. Из органов и тканей делают тонкие мазки-отпечатки. Мазки подсушивают на воздухе и фиксируют в течение 30 мин. в 96 º этаноле, смеси Никифорова или охлажденном ацетоне. После фиксации препараты вновь подсушивают на воздухе (не обжигают) и подвергают окрашиванию. Для спорообразующих видов микроорганизмов фиксатором служит 96º этанол с 10 % формалина или с 3 % перекиси водорода.

Окраска препаратов флуоресцирующими Ig:на фиксированные и высушенные мазки наносят пипеткой рабочую смесь специфического флуоресцирующего иммуноглобулина и контрастирующего альбумина так, чтобы вся площадь мазка была покрыта конъюгатом. Обработку мазков проводят во влажной камере при 37 ºС в течение 30 мин. Затем конъюгат смывают ЗФР, мазки дважды промывают по 10 мин ЗФР, после чего ополаскивают дистиллированной водой и высушивают при комнатной температуре.

До начала работы флуоресцирующие иммуноглобулины и контрастирующий альбумин растворяют дистиллированной водой в объеме, указанном на этикетке ампулы. К использованию пригодны лишь те конъюгаты, которые легко и без осадка растворяются в течение 1-2 мин. Растворенные препараты могут затем храниться при 2-4 ºС в течение 2-3 недель, будучи плотно закрытыми. Окраску мазков производят так называемой рабочей смесью конъюгатов, которую готовят также заблаговременно, но срок ее хранения при 2-4 º С не должен превышать семи дней.

Важнейшим условием правильного составления рабочей смеси конъюгатов является оптимальный подбор в ней соотношения флуоресцирующего Ig, меченного ФИТЦ, и альбумина, меченого родамином. Эти соотношения для каждой новой партии флуоресцирующих конъюгатов подбирают опытным путем, поскольку указанные на этикетке ампулы рабочие разведения являются ориентировочными. Титрование флуоресцирующих конъюгатов целесообразно проводить на контрольных мазках, содержащих гомологичные флуоресцирующим иммуноглобулинам микроорганизмы или их АГ.

Определение красящего титра контрастирующего альбумина. Из цельного раствора альбумина, меченного родамином, готовят ряд двукратных разведений в стерильном ЗФР рН 7,2 от 1:2 до 1:128, наносят на контрольные «грязные» мазки (с посторонней микрофлорой) и инкубируют во влажной камере при 37 ºС в течение 30 мин. Затем мазки промывают дважды по 10 мин ЗФР, ополаскивают дист. водой, подсушивают на воздухе и микроскопируют. В полевых условиях вместо ЗФР мазки можно промывать проточной водой, а затем ополаскивать дистиллированной водой. Последнее разведение контрастирующего альбумина, дающее оранжево-красное свечение микробных клеток в мазке на 1-2 креста, принимают за красящий титр. Соответственно рабочее разведение меченого альбумина будет в 2 раза выше красящего титра (табл. 4).

Таблица 4

Пример титрования флуоресцирующего альбумина

Препараты Интенсивность свечения клеток в мазках при разведении альбумина Красящий титр Рабочее разведение
  1:4 1:8 1:16 1:32 1:64 1:128
Мазок-отпечаток с тампона (смыв) + + + + + + + + + + + + ++ - 1:64 1:32
Мазок-отпечаток селезенки мыши + + + + + + + + + + + - - 1:32 1:16
Перевиваемые клетки амниона человека + + + ++ + + + + + + + - 1:64 1:32

Условные обозначения:

+++ - отчетливо выраженное оранжево-красное или красно-бурое свечение

+ + - красное свечение различных оттенков

+ - серо-желтое (бурое) свечение

- - свечение отсутствует или видна аутолюминесценция

 

Определение красящего титра специфических флуоресцирующих Ig в смеси с контрастирующим альбумином, меченым родамином. Двукратные разведения испытуемого конъюгата специфических флуоресцирующих Ig смешивают с двойным рабочим разведением контрастирующего альбумина и окрашивают контрольные мазки, приготовленные из взвеси гомологичных микроорганизмов, как сказано выше. Последнее разведение, обеспечивающее яркое зеленое изумрудное специфическое свечение микробов на 3-4+ на оранжево-красном фоне препарата, является красящим титром испытуемого специфического Ig. Для дальнейшей работы смешивают в равных объемах удвоенные рабочие разведения альбумина и специфического флуоресцирующего Ig (табл. 5).

Таблица 5

Пример титрования флуоресцирующего иммуноглобулина в присутствии альбумина

Препараты Характер флуоресценции Интенсивность свечения при различных разведениях специфического конъюгата в смеси с альбумином, взятым в рабочем разведении 1:16 Красящий титр флуоресцирующего иммуноглобулина Рабочее разведение иммуноглобулина в смеси с альбумином
    1:4 1:8 1:16 1:32 1:64
Мазок из смыва Специфическая зеленая + + ++++   + + + + 1:32 1:16
  Неспецифическая красная + + + + + + + + +    
Мазок-отпечаток селезенки мыши Специфическая зеленая + + + + ++++ ++++ +++ + + 1:32 1:16
  Неспецифическая красная + + + + + + + + +    
Монослой перевиваемых клеток амниона человека Специфическая зеленая ++++ ++++ ++++ +++ + 1:32 1:16
  Неспецифическая красная - + + + + + + +    

 

Примечание: Красящий титр флуоресцирующего иммуноглобулина в этом примере равен 1:32. Однако для окраски мазков специфический конъюгат, как и контрастирующий альбумин, используется в рабочем разведении, которое должно быть в два раза концентрированнее его красящего титра. Следовательно, рабочая смесь конъюгатов, выбранная на основании приведенных в данном примере результатов, должна состоять из разведенного 1:16 специфического флуоресцирующего иммуноглобулина и контрастирующего альбумина, взятого в разведении 1:16. Чтобы получить в рабочей смеси эти оптимальные соотношения, оба конъюгата должны быть сначала разведены 1:8, а затем смешаны в равных объемах.

Непрямой МФА.Подготовка мазков для проведения серологических анализов. Мазки с заведомо известными микроорганизмами (бактериями, риккетсиями) готовят либо из стандартных корпускулярных АГ и диагностикумов (например, из корпускулярных антигенов для реакции агглютинации), либо из взвесей 1-2-суточных культур живых аттенуированных вакцин (EV, СТИ, туляремийной, бруцеллезной и др.). Для выявления противовирусных АТ используют пластинки с монослоем культуры клеток, инфицированных соответствующим вирусом. Взвеси из корпускулярных АГ или живых культур вакцинных штаммов бактерий готовят на ФР концентрацией примерно 500 млн м.к./мл (по оптическому стандарту мутности ГИСК им. Л.А.Тарасевича). Взвеси, приготовленные из сухих корпускулярных АГ, целесообразно предварительно выдержать в течение 2 - 4 ч при температуре 4 – 10 °С для более полной регидратации и только потом использовать их для приготовления мазков. Это снижает в ряде случаев неспецифическую сорбцию на АГ сывороточных протеинов и позволяет избежать ошибок при интерпретации результатов анализа. Мазки готовят на специальных графленых предметных стеклах со шлифованной поверхностью на одном конце (для маркировки стекла). Микробную взвесь (АГ) наносят на стекло тонкой пастеровской пипеткой (по 6-8 капель на каждом стекле). Затем мазки высушивают на воздухе при комнатной температуре и фиксируют в течение 15 мин на холоде ацетоном или 96 ° этиловым спиртом. Мазки из микробной взвеси или корпускулярного АГ можно готовить впрок. При условии их хранения при температуре не выше 0 °С они могут быть пригодны для использования в течение месяца. Монослои инфицированных вирусом клеточных культур, длительному хранению не подлежат и должны быть использованы в течение ближайших 2-3 дней.

Подготовка исследуемых сывороток: исследуемые с помощью НМФА сыворотки людей и животных какой-либо предварительной специальной обработке не подвергаются. Их инактивацию проводят путем прогревания при 56 °С в течение 30 мин. Для определения титра специфических АТ испытуемые сыворотки разводят ФР в пределах от 1:10 до 1:1280 и более (в случае необходимости). Используемые контрольные сыворотки (заведомо нормальная или гетерологичная содержащимся в мазке антигенам) берут в разведении 1:20 - 1:40.

Подготовка антивидовых флуоресцирющих. иммуноглобулинов. При выявлении АТ в сыворотках крови с помощью НМФА используют (в зависимости от применяемой модификации метода) либо антивидовые флуоресцирующие иммуноглобулины, гомологичные белкам исследуемой сыворотки, либо флуоресцирующие иммуноглобулины к комплементу морской свинки. Сухие конъюгаты растворяют дистиллированной водой в объеме, указанном на этикетке ампулы (обычно в 0,5 мл). К использованию годны лишь те конъюгаты, которые легко и без осадка растворяются в течение 1 -2 мин. Для обработки мазков готовят рабочие смеси, состоящие из равных объемов флуоресцирующего антивидового (антикомплементарного) иммуноглобулина и контрастирующего альбумина, взятых в рабочих разведениях. Поскольку указанные на этикетках ампул рабочие разведения флуоресцирующих конъюгатов являются ориентировочными, рекомендуется предварительно (для каждой новой серии препаратов) определить их красящий титр и рабочее разведение. Методика титрования конъюгатов и выбора оптимальных соотношений при составлении рабочей смеси аналогична используемой при подготовке препаратов для прямого варианта МФА.

При титровании антивидового (антикомплементарного) флуоресцирующего иммуноглобулина на первом этапе обработки мазков используют заведомо положительную (гомологичную содержащемуся в мазке АГ) нефлуоресцирующую сыворотку в разведении 1:5-1:10.

Техника титрования исследуемых сывороток. Исследование сывороток с помощью НМФА включает в себя два этапа обработки мазков, содержащих заведомо известные микроорганизмы (АГ). На первом этапе, в зависимости от избранной модификации метода, на мазки наносят последовательные двукратные разведения испытуемых сывороток (иммунофлюоресцентная окраска сывороточных иммуноглобулинов) или смеси равных объемов комплемента морской свинки, взятого в разведении 1:10 (сухой комплемент) или 1:20 (свежий, жидкий комплемент), и последовательных двукратных разведений испытуемой сыворотки (иммунофлуоресцентная окраска комплемента). При нанесении и распределении по мазку соответствующих разведений сыворотки (или их смесей с комплементом) не следует допускать их слияния и перемешивания. Мазки с нанесенными на них разведениями сыворотки инкубируют 20 мин во влажной камере при температуре 37 °С, затем в течение нескольких секунд промывают под легкой струей воды, отмывают в двух сменах (по 10 мин каждая) ЗФР и ополаскивают дистиллированной водой. После отмывки препараты высушивают на воздухе при комнатной температуре. На втором этапе окраски на высохшие мазки наносят по капле рабочей смеси соответствующего антивидового (антикомплементарного) флуоресцирующего иммуноглобулина и контрастирующего альбумина. Мазки вновь выдерживают 20 мин во влажной камере при температуре 37 °С. После этого с мазков стряхивают остатки смеси конъюгатов, отмывают в двух сменах (по 10 мин каждая) буферного раствора и споласкивают дистиллированной водой. В полевых условиях вместо ЗФР мазки можно промывать 10 мин проточной водой, а затем ополаскивать дистиллированной водой. Окрашенные мазки высушивают на воздухе при комнатной температуре.

Учет и оценка результатов микроскопии. О наличии специфических антител в исследуемых сыворотках (серодиагностика) судят по степени яркости свечения микроорганизмов в окрашенных препаратах. За титр сыворотки принимают то наибольшее ее разведение, которое еще обеспечивает свечение гомологичных микроорганизмов интенсивностью не менее чем на 2 креста при отрицательных результатах в контроле. При оценке диагностического значения положительных результатов анализа обращают внимание не только на высоту титра обнаруженных АТ, но и на динамику их нарастания при исследовании парных сывороток. Повышение титра АТ в сыворотках, взятых повторно через 7-10 дней, указывает на инфекционный процесс. Отсутствие динамики может свидетельствовать об анамнестическом характере выявленных АТ. При идентификации с помощью НМФА выделенных микроорганизмов о видовой (групповой) принадлежности последних судят по результатам титрования заведомо известных диагностических сывороток. Гомологичные микроорганизмы реагируют со специфическими сыворотками в максимальном разведении, близком к их титру.

Контрольные исследования. Контрольные исследования при иммунофлуоресцентной серодиагностике предусматривают: 1. исследование препаратов, обработанных на первом этапе заведомо «отрицательной» сывороткой и докрашенных соответстветствующим ей антивидовым флуоресцирующим иммуноглобулином; 2. исследование препаратов, обработанных непосредственно (без первого этапа) смесью флуоресцирующего антивидового иммуноглобулина с контрастирующим альбумином. В обоих случаях специфическая флуоресценция должна отсутствовать.

При иммунофлуоресцентной идентификации выделенных микроорганизмов препараты обрабатывают на первом этапе серией нефлуоресцирующих специфических сывороток, а затем докрашивают соответствующими рабочими смесями конъюгатов. Специфическое свечение при этом может наблюдаться лишь в одном из окрашенных препаратов, а именно в обработанном на первом этапе гомологичной изучаемому агенту сывороткой. Все остальные препараты являются контрольными. Специфическая флуоресценция в них должна отсутствовать

Варианты иммуносорбентного анализа на твердой фазе

Твердофазные методы исследования предполагают использование твердой фазы в качестве основы для сорбции на ней иммунных реагентов: АТ (АГ). Все этапы реакции протекают на границе 2-х фаз: твердой и жидкой. Не прореагировавшие компоненты удаляются с помощью отмывания. Чувствительность этих методов превышает аналогичный показатель агглютинационных реакций.

Иммуноэритроадсорбционный метод (ИЭАМ).Принцип иммуноэритроадсорбционного метода обнаружения АГ (АТ) состоит в том, что специфические АТ (АГ), адсорбированные на стенках U-образной лунки твердой фазы, специфически взаимодействуют с искомым АГ (АТ), а последний затем иммунологически связывается со специфическими АТ (АГ), мечеными эритроцитами. Меченые эритроцитами АТ (АГ), вступившие во взаимодействие с АГ (АТ), остаются на стенках иммуносорбента (с образованием регистрируемого визуально "зонтика"), при отсутствии АГ (АТ) в исследуемом материале эритроциты под действием силы тяжести скатываются на дно лунки, формируя "пуговку". В качестве твердой фазы в ИЭАМ используют 60-луночные микрокамеры с объемом лунок 20 мкл – камеры Терасаки. Используемые в ИЭАМ эритроцитарные конъюгаты могут также применяться в РПГА в качестве антительного (антигенного) диагностикума.

Радиоиммунный анализ (РИА) –метод, в котором в качестве маркера АТ (АГ) используются радионуклиды – 125I, 14C , 3H , 51Cr и т.д. После взаимодействия АГ с АТ отделяют образовавшийся радиоактивный иммунный комплекс и определяют его радиоактивность в соответствующем счетчике (бета- или гамма-излучение): при этом интенсивность излучения прямо пропорциональна количеству связавшихся молекул АГ или АТ.

Иммуноферментный анализ (ИФА) (ELISA) –(от англ. ezyme-linked immunosorbent assay) - метод, в котором в качестве маркеров АТ (АГ) используют ферменты. Благодаря простоте и высокой чувствительности твердофазные иммуноферментные системы удобны для выявления АГ, АТ и иммунных комплексов. Проблемы специфичности ИФА по характеру и сложности те же, что и у других иммунологических методов. Они могут быть сведены к минимуму путем постоянного контроля качества реагентов и стандартизации методических приемов. Применение в ИФА моноклональных антител, обладающих строго определенной специфичностью и одинаковой аффинностью, позволяет повысить качество исследований (специфичность).

Твердофазными носителями для проведения ИФА могут быть различные материалы. В ранних разработках, как правило, использовали пластмассовые пробирки, на смену которым быстро пришли панели для титрования с лунками, имеющими плоское прозрачное дно, и удобные для измерения оптической плотности продуктов реакции на специальных приборах-ИФА-ридерах (от англ. to read-читать). Последние модификации в качестве твердой фазы предусматривают использование палочек и шариков, а также нитроцеллюлозных мембран, активно сорбирующих белки. Модификация с использованием мембран получила название «дот»-ИФА. Планшетный вариант ИФА на протяжении еще многих лет останется наиболее распространенным для решения большинства научных и прикладных задач.

Основные принципы твердофазного ИФА:Возможность проведения иммуноферментного анализа независимо от его модификации основана на следующих четырех принципах: 1. Различные ферменты, наибольшее распространение из которых получили пероксидаза хрена (ПХ) и щелочная фосфатаза (ЩФ), можно ковалентно присоединить к АГ или АТ различными химическими методами в таких условиях, когда оба компонента конъюгата сохраняют свою биологическую активность (способность взаимодействовать с субстратом и антигенсвязывающую активность). 2. Большинство АГ, в том числе белки, пептиды, полисахариды и бактериальные липополисахариды самопроизвольно сорбируются на поверхности пластика. АТ, будучи белками, тоже сорбируются на пластике и при этом сохраняют антигенсвязывающую активность. Именно на этом принципе основан первый этап реакции, заключающийся в «сенсибилизации» панелей АГ или АТ. Адсорбированные на твердой фазе АГ и АТ уже не смываются буфером, содержащим детергент, тогда как не связавшиеся реагенты легко удаляются отмыванием. 3. В «сенсибилизированных» лунках инкубируют исследуемый образец и стандартные реагенты. При этом на поверхности твердой фазы формируются иммунные комплексы, состоящие из одного или нескольких слоев. Не связавшиеся компоненты на каждом этапе удаляют отмыванием, что позволяет добиться высокой специфичности анализа в реакции входящего в состав конъюгата фермента с индикаторным субстратом. 4. При связывании конъюгата АТ=фермент или АГ=фермент с иммобилизованным иммунным комплексом активный центр фермента остается доступным для взаимодействия с субстратом. Инкубация субстрата в лунках с иммобилизованным конъюгатом приводит, как правило, к развитию цветной реакции. Эту реакцию останавливают на нужной стадии, а выраженность окрашивания оценивают визуально, сравнивая со стандартами, или инструментально по оптической плотности. Некоторые варианты метода, например, «дот»-ИФА и «метод индикаторной полоски» предполагают окрашивание самой твердой фазы. В этих случаях используют хромогенные субстраты, дающие продукты в виде нерастворимых, иммобилизованных на твердой фазе окрашенных преципитатов (табл.6).

Таблица 6

Ферменты и субстраты к ним

Фермент Коньюгирующий реагент Растворимый субстрат Рекомендуемая длина волны при фотометрии Нерастворимый субстрат
пероксидаза хрена (ПХ) 1. глутаральдегид (двухэтапный метод) 2. Мета-периодат натрия 3. N- сукцинимидил – 3 (2- пиридилдитно) пропинат (СПДП) Орто- фенилендиаминдигидрохлорид (ОФД) Тетраметилбензидин 2,2`-Азино-ди (3-этил) бензотиазолинсульфоновая кислота (АБТС) 5-Аминосалициловая кислота (АСК) 650 (и 405 после установки реакции) диаминобензидин 4-Хлоро-1-нафтол 3-Амино-4-этилкарбазол (АЭК)
Щелочная фосфатаза (ЩФ) Глутаральдегид (одноэтапный метод) N-n-нитрофенилфосфат щелочной (ПНФФ) 402-412 Нафтол As-mx фосфат + диазоль синий 2С (НАФДС) Нафтол As-mx фосфат + диазоль красный ТР (НАФДК) 5-бромо-4-хлоро-3-водил-фосфат (БХНФ)
β- галактозидаза (β-Г) Мета-малеимидобензол – N- гидроксисукцинимидный эфир (МБГС) Орто- нитрофенил- β-D галактозид (ОНФГ)  
Уреаза Глутаральдегид (одноэтапный метод) Бромкрезоловый пурпурный (БП)  
Пенициллиназа Глутаральдегид (одноэтапный метод) Иод и крахмал Визуальный учет обесцвечивания синей окраски  

 

Методические варианты ИФА для определения антител и антигенов

Для выявления и количественного определения АТ и АГ используют различные модификации ИФА с сенсибилизацией твердой фазысоответствующим иммунным реагентом.

«Сэндвич»-вариант ИФА для определения АГ и иммунных комплексов

Благодаря методической простоте, специфичности и высокой чувствительности широкое распространение получил так называемый «сандвич» -вариант ИФА. Его несложно модифицировать в «дот» - ИФА. В соответствии со схемой данного варианта анализа АТ (лучше моноклональные или высокоаффинные), адсорбированные на твердой фазе, инкубируют с исследуемым образцом (а также с положительным и отрицательным контрольными образцами и разведениями стандартного АГ). После отмывания в лунки вносят меченные ферментом АТ к тому же АГ и далее раствор субстрата к используемому в конъюгате ферменту. Через определенное время развившуюся цветную реакцию останавливают ингибитором фермента.

Непрямой ИФА для выявления АТ

Этот вариант ИФА наиболее удобен для повседневного анализа образцов сывороток на наличие специфических АТ. Для проведения анализа в лунках панелей адсорбируют АГ (экстракт из бактерий, паразитов или вирусов), далее в них инкубируют образцы сывороток или другого материала (например, молока, слюны, спинномозговой жидкости). Специфические АТ, связавшиеся с сенсибилизированными АГ, выявляют с помощью антиглобулиновых антител либо стафилококкового белка А, меченых ферментом. Стафилококковый белок А=Ф является универсальным конъюгатом, с помощью которого можно исследовать на наличие специфических АТ сыворотки крови людей и любых видов животных (кроликов, мышей, баранов, лошадей и т.д.). Визуализация реакции происходит при добавлении в лунки соответствующего ферменту раствора субстрата.

Для постановки ИФА важное значение имеют следующие моменты:

1. Панели для ИФА и их способность адсорбировать АТ или АГ. Полистироловые и полихлорвиниловые панели, выпускаемые различными производителями, могут сильно различаться по способности адсорбировать иммунные реагенты. Серьезные различия возможны и между отдельными партиями панелей одной марки. Лучше всего использовать высококачественные панели, предназначенные специально для ИФА. В этом случае «краевые» эффекты и различия в адсорбционной способности между отдельными планшетами и партиями сведены к минимуму, а оптические свойства лунок обеспечивают высокую точность учета результатов.

2. Оптимальная концентрация АТ или АГ для сенсибилизации панелей. Подбор оптимальной концентрации АТ или АГ для сенсибилизации панелей - один из наиболее ответственных этапов в ИФА. От него во многом зависят результаты проведения анализа. Сенсибилизация панелей недостаточным количеством АТ или АГ снижает чувствительность анализа и создает условия для неспецифической адгезии конъюгата непосредственно на пластике, неэкранированном сенситином. Это приводит, в конечном счете, к повышению фонового уровня реакции и неверной оценке результатов. Сенсибилизация чрезмерным количеством АТ или АГ может привести к неспецифическому связыванию реагентов с иммобилизованным сенситином.

3. Неспецифическое связывание и свойства конъюгата. Для высокочувствительного ИФA необходимо использование конъюгатов с возможно более высоким соотношением между уровнем сигнала (положительный результат) и шума (фоновый уровень). Высокое неспецифическое связывание может быть вызвано большими размерами полимеров конъюгатов. Для этого целесообразно использовать не концентрированные растворы конъюгатов, а разведенные до рабочего титра. Кроме того, неспецифическое связывание удается уменьшить, блокируя ответственные за этот процесс участки твердой фазы слабым раствором инертного белка в буфере для сенсибилизации. С этой целью обычно рекомендуют бычий сывороточный альбумин (БСА). После сенсибилизации твердой фазы соответствующими иммунными реагентами раствор БСА инкубируют в лунках панелей (30-45мин) при комнатной температуре. Панели затем отмывают и проводят последующие этапы анализа.

4. Свойства субстрата. Ортофенилендиамин (ОФД), применяемый в качестве субстрата для ПХ, светочувствителен и на свету в смеси с перекисью водорода (h3O2) спонтанно окрашивается в желтый цвет. Поэтому субстрат готовят непосредственно перед постановкой реакции в сосуде, полностью обернутом фольгой. Панели после внесения раствора субстрата инкубируют в темноте. Реакцию следует остановить в тот момент, когда оптическая плотность (ОП) положительного контроля достигнет оптимального уровня при отсутствии окрашивания в отрицательных образцах. Для обеспечения стандартности результатов необходимо точно знать время оптимального развития цветной реакции и температуру ее проведения.

5. Хранение сенсибилизированных панелей. Панели, сенсибилизированные АТ и некоторыми АГ, после отмывания и тщательного высушивания можно хранить в герметичной упаковке с вложенным влагопоглотителем (гранулами силикагеля) при температуре 4 ˚С. Устойчивость разных АГ к высушиванию и хранению после иммобилизации на пластике неодинакова.

Интерпретация результатов ИФА

При визуальной оценке. Интенсивность окрашивания в лунках с отрицательными контролями должна быть низкой. Ее оценивают как отрицательную (-) или неопределенную (±). В тех лунках, где прошла положительная реакция, степень окрашивания оценивают по четырехбальной шкале: от 4+ до 1+. Образцы, при титре которых получены неясные пограничные результаты, необходимо исследовать вновь в меньших разведениях, проводя повторно отрицательные контроли.

При спектрофотометрической оценке. Оценка результатов по пороговому уровню реакции. В простейшем случае результат считают положительным, если ОП исследуемого образца превышает максимальную ОП в лунках с отрицательными контролями.

Варианты твердофазного иммуноферментного анализа

Известно несколько методических вариантов ИФA, различающихся по типу твердой фазы.

ИФA на стрипах

ИФA обычно проводят в планшетах для микротитрования. Помимо целых панелей выпускаются и отдельные полоски (стрипы) с одним рядом лунок, из которых затем можно собрать панель необходимого размера и добиться таким образом экономии расходных материалов. Результаты анализа в таких сборных панелях учитывают визуально или на обычном ИФА-ридере.

ИФА со стержнями

Эта модификация заключается в том, что в каждую лунку панели погружают стержень, сенсибилизированный АГ или АТ. Таким образом, иммунные комплексы формируются на стержнях, а окрашивание растворимого субстрата обычно происходит в лунках. Результаты реакции учитывают так же, как и при традиционном ИФА в панелях. Вместо растворимого субстрата при осуществлении данного варианта ИФА можно использовать нерастворимый - в этом случае окрашивание регистрируют на «стержнях». Такой вариант, однако, менее удобен для точного количественного учета.

ИФА в кюветах

Кюветы имеют больший объем по сравнению с лунками панелей и, следовательно, большую адсорбционную емкость, а также оптически прозрачные боковые стенки для измерения ОП на специальном ридере с горизонтальным направлением луча, что позволяют достичь более высокой чувствительности анализа. Однако данный вариант ИФА более дорогой, так как из-за больших объемов кювет происходит значительный расход реагентов. ИФА в кюветах применяют главным образом для проведения одноэтапного гомогенного анализа низкомолекулярных веществ.



infopedia.su

Флуоресцирующие антитела - Справочник химика 21

    Этот метод используется обычно при наблюдении клеток, обработанных флуоресцирующими антителами (разд. 14.3.2), или при изучении окрашенных акрихином хромосом (разд. 8.4.3). С помощью флуоресцентной микроскопии можно наблюдать нуклеиновые кислоты и другие клеточные компоненты при возбуждении их флуоресценции светом с длиной волны около 260 нм. Важно использовать достаточно мощный источник света с достаточно короткой длиной волны. Обычно для этой цели применяется ртутная лампа, но некоторые работы могут проводиться с более дешевой кварцевой иодидной лампой. [c.108]
Рис. 20-49. Микротрубочки и целлюлозные микрофибриллы в развивающихся волокнах хлопка. Микротрубочки (А) окрашены флуоресцирующими антителами и располагаются по спирали. Клетка расплющена , благодаря чему видны части спирали как на передней, так и на задней стенке. Вновь отложенные целлюлозные микрофибриллы в такой же клетке (Б) окрашены красителем калькофлюором белым, который при связывании с растущими молекулами целлюлозы лает свечение. Микро фибриллы, подобно укрепляющему корду садового шланга, лелают стенки хлопкового Рис. 20-49. <a href="/info/101277">Микротрубочки</a> и целлюлозные <a href="/info/150191">микрофибриллы</a> в развивающихся волокнах хлопка. <a href="/info/101277">Микротрубочки</a> (А) окрашены флуоресцирующими антителами и располагаются по спирали. Клетка расплющена , благодаря чему видны части спирали как на передней, так и на задней стенке. Вновь отложенные целлюлозные <a href="/info/150191">микрофибриллы</a> в такой же клетке (Б) окрашены красителем калькофлюором белым, который при связывании с растущими молекулами целлюлозы лает свечение. Микро фибриллы, подобно укрепляющему корду садового шланга, лелают стенки хлопкового
    Флуоресцирующие антитела представляют собой гамма-глобу-линовые фракции иммунных агглютинирующих сывороток, химически соединенные с флуорохромами. Вследствие этого они обла- [c.164]

    В практике используется два принципа обработки препаратов флуоресцирующими антителами — прямой и непрямой методы. [c.165]

    Большое число микротрубочек содержится в длинных аксонах нервных клеток. Здесь они, вероятно, обеспечивают быстрый перенос белков и других веществ из тела клетки в аксон Микротрубочки, функция которых неизвестна, обнаружены и во многих сенсорных клетках. Недавно было показано, что микротрубочки содержатся в цитоплазме самых разных клеток. Иопользуя непрямой метод флуоресцирующих антител, Вебер и др. получили приведенную ниже [c.276]

    Клетки фиксировали формальдегидом, обезвоживали и подвергали воздействию антител, полученных путем иммунизации кроликов белком микротрубочек. Затем клетки обрабатывали флуоресцирующими антителами козы, специфичными. в отношении кроличьего у-глобулина (дополнение 5-Е), и [c.277]

    Специфические флуоресцирующие антитела, специфичные к цитохрому с, связываются только с С-стороны внутренней мембраны, а антитела к цитохромоксидазе — с обеих сторон это дает основание думать, что этот белок пронизывает всю мембрану [66, 66а]. Одиако окисление цитохрома с (с участием цитохрома а) происходит только на С-стороне, а восстановление Ог (при участии цитохрома аз) — только на М-стороне [66]. Далее, антитела к фактору сопряжения , образующего шишковидные выступы, связываются только со стороны матрикса. [c.393]

    Принцип использования флуоресцирующих антител был приспособлен и для электронной микроскопии антитела или гаптены соединяются с электроноплотными веществами (например, с железосодержащим белком ферритином) или такими, которые могут быть сделаны электроноплотными уже после реакции антиген — антитело (например, с антителом связывается пероксидаза из хрена, которой после связывания дают возможность реагировать с диаминобензидином). На практике используется множество комбинаций, включающих антисыворотки с различными специфичностями, фрагменты антител, гаптены, а также такие маркеры для визуализации, как небольшие вирусы и т. п. Эти методы, применимые к целым бактериям, позволяют локализовать поверхностные антигены точнее, чем это делают с помощью оптического микроскопа. Преимущества электронной микроскопии становятся еще более очевидными, когда меченые антитела применяют еще до фиксации, заливки и приготовления срезов, так что метка видна в тонких срезах. В некоторых случаях аналогичным образом метят не антитела, а другие вещества с известной специфичностью чаще всего применяются лектины растений, такие, как конканавалин А, которые специфично связываются с сахарными остатками [88]. [c.125]

    Число специфических клеток микроорганизмов в природных образцах может быть установлено с помощью применения техники флуоресцирующих антител. Но для этого необходима предварительная подготовка, включающая выделение чистых культур ис- [c.257]

Рис. 20-15. Микротрубочки в кортикальном слое клетки из развивающейся ксилемы побега гороха. Обработка флуоресцирующими антителами выявляет спиральное расположение микротрубочек, которые определяют участок клеточной стенки, подлежащей утолщению сначала за счет отложений целлюлозы, а затем и лигнина (см. схему 20-1). Клетка крупная, поэтому глубина фокусного расстояния позволяет увидеть лишь Рис. 20-15. <a href="/info/101277">Микротрубочки</a> в кортикальном слое клетки из развивающейся ксилемы побега гороха. Обработка флуоресцирующими антителами выявляет спиральное <a href="/info/765566">расположение микротрубочек</a>, которые определяют участок <a href="/info/100385">клеточной стенки</a>, подлежащей утолщению сначала за счет отложений целлюлозы, а затем и лигнина (см. схему 20-1). Клетка крупная, поэтому глубина фокусного расстояния позволяет увидеть лишь
    Тест с использованием флуоресцирующих антител [c.67]

    Метод флуоресцирующих антител [c.208]

    На каких химических принципах основана модификация компонентов клеточной поверхности с использованием в качестве реагентов следующих соединений а) лактопероксидазы, б) галактозооксида-зы, в) формилметионилсульфонметилфосфата, г) диазониевой соли дииодосульфаниловой кислоты, д) флуоресцирующих антител, е) антител, связанных с ферритином. Напишите уравнения соответствующих химических реакций. Укажите, какие поверхностные группы модифицируются. Перечислите преимущества указанных реагентов. [c.398]

    Методика исследования микроколоний на мембранных фильтрах с помощью лю линесцентной микроскопии разработана для ускоренной дифференциации кишеЧной палочки и холерного вибриона. Однако эта методика не позволяет осуществлять специфическую окраску и дифференциацию патогенных от непатогенных микробов, имеющих одинаковые морфологические и физиологические свойства. Такая дифференциация осуществляется только с помощью метода флуоресцирующих антител. [c.164]

    Новые возможности для усовершенствования определения общего числа микроорганиз.мов открылись с развитием люминесцентного анализа. Метод флуоресцирующих антител нашел широкое применение в микро- [c.90]

    Перспективным методом и самым быстрым для обнаружения фекальных стрептококков группы D в воде является комбинация техники мембранных фильтров и флуоресцирующих антител. Время анализа — 10—12 ч (Pugsley, Evison, 1975). Значение быстрой идентификации фекальных стрептококков с помощью флуоресцирующих антител в оценке качества воды подчеркнуто Pavlova с соавт. (1973). [c.176]

    У взрослого млекопитающего каждое волокно скелетной мышоы имеет в норме лишь одии синапс, и почти все ацетилхолиновые рецепторы сосредоточены иа участке мембраны, лежащем под окончанием аксона концентрация этих рецепторов здесь более чем в тысячу раз выше, нежели в областях, удаленных от синапса. С помощью флуоресцирующих антител (см. разд 6.215) было доказано, что рецепторы в области синапса каким-то образом закреплены и не могут свободно перемещаться в плоскости мембраны. Кроме того, этн белки лишь медленно обновляются-время их службы составляет не меньше пяти дней. [c.113]

    Рнс. 19-55. Одиночная клетка моркови, растущая в культуре in vitro. Это сильно вытянутая цилиндрическая клетка была обработана флуоресцирующими антителами к тубулину, что позволило выявить опоясывающие ее кольцевые пучки микротрубочек. Ориентация микротрубочек в таких клетках определяет ориентацию целлюлозных мнкрофибрилл, откладывающихся в клеточной стенке. (С любезного разрешения .W. Lloyd.) [c.200]

    В. Я. Ш е в л я г ин, Успехи соврем, биологии 45, вып. 2, 218 (1958). Обнаруя е-пие антигенов с помощью флуоресцирующих антител. [c.324]

    Ермакова Г. И., ТарасевичЛ. М. Применение метода флуоресцирующих антител для обнаружения нолиэдренного антигена в яйцах (грене) тутового шелкопряда. — Вопросы вирусологии , 1968, № 1, с. 89—93. [c.333]

Рис. 20-48. Расположение кортикальных микротрубочек. А. Тангенциальный срез клетки из кончика корня тимофеевки. Видны кортикальные микротрубочки, лежащие непосредственно под плазматической мембраной они расположены под прямым углом к продольной оси клетки. Б. Отдельная клетка кончика корня лука. В. Та же клетка, окрашенная флуоресцирующими антителами, эта обработка позволяет выявить характер расположения микротрубочек. (А -с любезного разрешения В. Gunning БиВ - с любезного разрешения К. Goodbody.) Рис. 20-48. Расположение кортикальных <a href="/info/101277">микротрубочек</a>. А. Тангенциальный срез клетки из кончика корня тимофеевки. Видны кортикальные <a href="/info/101277">микротрубочки</a>, лежащие непосредственно под плазматической мембраной они расположены под прямым углом к продольной оси клетки. Б. <a href="/info/1354805">Отдельная клетка</a> кончика корня <a href="/info/506549">лука</a>. В. Та же клетка, окрашенная флуоресцирующими антителами, эта обработка позволяет выявить характер <a href="/info/765566">расположения микротрубочек</a>. (А -с любезного разрешения В. Gunning БиВ - с любезного разрешения К. Goodbody.)
    В разные сроки после удаления колцемида клетки обрабатывали флуоресцирующими антителами к тубулину. Микротрубочки сначала появляются в виде звездчатых структур, а затем растут по направлению к периферии клетки. (М. Osborn, К. Weber, [c.107]

    Молекулы фибронектина, коллагена, протеогликанов и гиалуроновой кислоты могут не просто содержаться во внеклеточном матриксе, а находиться в связи с поверхностью клеток. Способ прикрепления этих молекул к наружной стороне плазматической мембраны неясен, а вопрос о том, где кончаются компоненты, связанные с клеточной мембраной, и где начинается внеклеточный матрикс,-в значительной степени семантический. Например, гликока-ликс содержит и то и другое (разд. 6.3.1). При использовании флуоресцирующих антител для выявления фибронектина на поверхности культивируемых фибробластов оказывается, что фибронектин расположен удивительно регулярными рядами между соседними клетками и между клетками и субстратом (рис. 12-70, Л). Если же клетки обработать цитохалазином, который разрушает внутриклеточные пучки актиновых филаментов, то волокна фибронектина отделяются от клеточной поверхности (точно так же, как во время митоза, когда клетки округляются). По-видимому, существует какая-то косвенная связь между внеклеточным фибронектином и внутриклеточными актиновыми филаментами. [c.240]

    Клетки окрашиваются флуоресцирующим красителем, специфическим для отдельных клеточных компонентов (может быть использован бромид этндия в концентрации 0,1 мг/мл для окраски ДНК или флуоресцирующие антитела). Анализ окрашенных клеток производится по мере их прохождения одна за другой через сенсорное устройство. Так, при прохождении клетками расположенного перпендикулярно луча аргонового лазера (время прохождения 2—3 мкс) каждая клетка дает вспышку флуоресценции, которая может быть проанализирована как по интенсивности, так и по цвету. Кроме того, сигнал, соответствующий клеточному объему, может генерироваться путем установки диафрагмы счетчика Коултера на пути прохождения клеток либо, что проще, путем измерения рассеянного света вторым фотоумножителем, установленным под прямым углом к лазерному лучу. Информация, полученная в результате измерения флуоресценции клеток и светорассеяния, позволяет воссоздать трехмерную картину числа клеток, их объема и содержания в них ДНК. [c.140]

    При обработке криостатных срезов мышечной ткани антителами к Са-АТФазе саркоплазматического ретикулума и вторыми флуоресцирующими антителами выявляется густая внутриклеточная сеть. На поперечном срезе клетки скелетной мышцы видны до 1000 ячеек, напоминающих по форме пчелиные соты. Система саркоплазматического ретикулума оплетает каждую миофибриллу (рис. 14). Различают свободный саркоплаз-матический ретикулум, или мембранные трубочки, и соединительный саркоплазматический ретикулум, или терминальные цистерны, контактирующие с впячиваниями сарколеммы (/ -трубочками) или с самой сарколеммой. [c.52]

    Главным инструментом при изучении антигенов клеточных мембран служат флуоресцирующие антитела. Соответствующий метод, впервые разработанный Кунсом и его сотрудниками еще в 1941 г. (обзор СоМтап, 1968), состоит в применении аитител, конъюгированных с флуорохромами, для определения точной локализации специфических антигенов на срезах ткаией или мазках. Этот метод, сочетающий гистохимические и иммунохимические подходы, благодаря своей универсальности, специфичности и простоте занял важное место в клеточной биологии. Чувствительность окрашивания можно повысить, если ис-пользовать непрямой метод. Прн этом немодифициро-ваниую специфическую антисыворотку наносят на исследуемый образец, и антитела соединяются с антигеном. Затем образец отмывают от избытка антисыворотки и обрабаты1вают меченными флуоресцеином антителами к иммуноглобулинам того вида животных, от которого была получена первая антисыворотка. [c.161]

chem21.info

Антитела, метод флуоресцентных антител - Справочник химика 21

    Этот метод используется обычно при наблюдении клеток, обработанных флуоресцирующими антителами (разд. 14.3.2), или при изучении окрашенных акрихином хромосом (разд. 8.4.3). С помощью флуоресцентной микроскопии можно наблюдать нуклеиновые кислоты и другие клеточные компоненты при возбуждении их флуоресценции светом с длиной волны около 260 нм. Важно использовать достаточно мощный источник света с достаточно короткой длиной волны. Обычно для этой цели применяется ртутная лампа, но некоторые работы могут проводиться с более дешевой кварцевой иодидной лампой. [c.108]     Очень широкое применение нашли производные флуоресцеина и родамина в иммуноцитохимии. Для этой цели используют реакции флуоресцентных метчиков с белками-антителами и затем по люминесценции метчика судят о путях распространения антител в организме. Впервые метод флуоресцентной метки антител был описан Кунсом й др. [19], предложившими в качестве метчика флуоресцеин-изоцианат. В дальнейшем для метки белков были предложены и [c.291]

    Чрезвычайно чувствительный и избирательный иммуноанализ используется при определении концентраций молекул, к которым могут быть получены антитела. Иммобилизация исследуемого вещества или антитела приводит к значительному упрощению иммуноанализа (радиоиммуноанализ, ферментативный иммуноанализ и метод флуоресцентных антител). [c.380]

    Метод непрямой окраски флуоресцентными антителами используется в АТСС в качестве одного из способов подтверждения вида линии клеток. Техника окрашивания включает два этапа. На первом из них из сыворотки кролика получают ви- [c.118]

    Метод флуоресцентных антител с использованием флуоресцеина [c.208]

    В непрямом методе антитела не сочетаются с флуорохромом. Вместо этого после взаимодействия антител с антигенами в фиксированных препаратах клеток к ним добавляются анти-гамма-глобулиновые антитела, конъюгированные с флуорохромом. Этот метод более чувствителен и позволяет избежать конъюгации каждого индивидуального антитела с флуоресцентным красителем. Так, одни и те же флуоресцентные антитела к антителам кролика (полученные у овец против кроличьих гамма-глобулинов) могут быть использованы для окраски любых антител, образующихся у кроликов и взаимодействующих с вирусными антигенами в продуктивно зараженных или трансформированных клетках. [c.208]

    Существуют три основных методических подхода для решения этой задачи. Первый способ — избирательное окрашивание нейронов, выделяющих определенный нейромедиатор, может осуществляться с помощью преобразования естественного медиатора в его флуоресцирующее производное. В этом случае флуоресценция определенных групп клеток поможет выявить специфические связи в структурах мозга. Второй экспериментальный подход связан с введением молекул медиатора, предварительно меченного радиоактивным изотопом. Нейронные окончания, содержащие исследуемый медиатор, способны избирательно захватывать метку. Затем их легко выявить методом авторадиографии. Третий способ обнаружения специфических связей в нервной системе состоит в использовании высоко специфичной способности узнавать либо антигенные детерминанты медиатора, либо определенные ферментные белки, участвующие в метаболизме нейромедиаторов, либо нейрорецептор-ные компоненты на мембране клетки. Последние считаются наиболее убедительным свидетельством в пользу существования конкретных нейрохимических взаимодействий межцу клетками и зонами мозга. Обычно для иммунохимической идентификации используют флуоресцентный краситель или изотоп, который маркирует антитела. В последние годы широко распространились методы, использующие антитела, меченные частицами тяжелых металлов, например коллоидного золота, железа и др. [c.224]

    Пример 15-Х. Метод флуоресцирующих антител Антитело к определенному веществу (например, вирусному антигену или компоненту клеточной стенки) связывается с флуоресцирующим красителем. Если антитело инкубировать с клетками, содержа щими антиген, и затем отмыть, то при исследовании клеток с помощью флуоресцентной микроскопии флуоресценция будет наблюдаться только там, где присутствует антиген. Этот метод широко используется для обнаружения антигенов опухолей и для идентификации внутриклеточных вирусов. Более полное описание метода дано в гл. 2, а на рис. 2-20 приведен пример его использования. [c.446]

    Проблемы теории и количественной оценки флуоресценции, принципы флуоресцентной микроскопии, а также разнообразные способы применения метода флуоресцирующих антител в последние годы были предметом обсуждения на многочисленных конференциях, и им посвящена большая литература некоторые издания указаны в разделе Рекомендуемая литература в конце главы. [c.165]

    Прямой иммунофлуоресцентный метод. Раствор антител, меченных флуоресцентным красителем, наносят на поверхность среза препарат инкубируют, после чего отмывают от избытка антител. Затем связавшиеся антитела выявляют при помощи флуоресцентного микроскопа. Пучок УФ-лучей, направленный на срез через объектив, позволяет видеть темное поле со светящимися зеленым цветом участками, где локализованы связанные антитела. Распределение флуоресценции на срезе имеет характерный вид для каждого тканевого антигена. [c.533]

    Иммуноглобулины. Сывороточные антитела, подразделяемые на классы IgG, IgM, IgA, IgE и IgD. Иммунофлуоресценция. Метод микроскопической идентификации антигенов в тканях или на клетках с использованием конъюгатов специфических антител с флуоресцентным красителем. [c.558]

    Вы выясняете локализацию модифицированных С-белков в клетке с помощью метода иммунофлуоресцентной микроскопии, используя специфичные к С-белкам антитела с флуоресцентными маркерами. [c.120]

    Примеры использования иммунологических методов в биологическом анализе 263 Примеры использования радиоиммунологического анализа 269 Иммунологические методики для локализации веществ в клетках, тканях и молекулах флуоресцентные антитела и антитела, связанные с ферритином 272 Список литературы 272 Задачи 273 [c.577]

    Меченые антитела могут использоваться для изучения распределения антигенов в срезах тканей с помощью как светового, так и электронного микроскопа. При работе по общепринятому сэндвич-методу на срез наносят немеченые специфические антитела, отмывают их избыток, а затем добавляют антитело против иммуноглобулина (обычно несущее флуоресцентную [c.330]

    Индикация образовавшегося комплекса антиген — антитело в растворе может быть осуществлена, если в один из исходных ком-, понентов реакционной системы ввести метку, которая легко детектируется соответствующим высокочувствительным физико-химическим методом. Весьма удобными для этой цели оказались изотопные, ферментные, флуоресцентные, парамагнитные метки, использование которых дало возможность увеличить чувствительность иммунохимических методов в миллионы раз, а время анализа уменьшить до нескольких часов. [c.5]

    Флуоресцентные методы основаны на способности остатков триптофана в молекулах белков флуоресцировать (330—360 нм) при возбуждении УФ светом (280 нм). Взаимодействие ряда антигенов с антителами приводит к изменению интенсивности флуоресценции, что может быть использовано для оценки количе- [c.43]

    Хотя в последние годы опубликовано немало статей, описывающих преимущества ФИА, соответствующие наборы и приборы стали выпускать в промышленном масштабе только недавно. Флуоресцентные метки значительно дешевле изотопных, срок годности наборов ФИА намного больше, чем наборов РИА, а флуоресценцию можно измерять на простых флуориметрах. Многие достоинства ФИА свойственны и методам ИФА (доступность методик ковалентного связывания ферментов с антигенами или антителами, стабильность меченых продуктов, безопасность и др.). Главный недостаток ИФА связан со способом измерения результата анализа, а именно с необходимостью дополнительной операции определения активности фермента с помощью соответствующего субстрата. Эта операция усложняет и замедляет анализ и в принципе может сни- [c.139]

    Пример 2-3. Метод флуоресцентного антитела, С антителами, полученными против частей клеток или белков, может ковалентно связываться флуоресцеин (рис. 2-20). Прибавление такого флуоресцентного антитела к тонким срезам тканей или к клеткам, которые в результате обработки кислотой или ацетоном стали проницаемыми для белка, позволяет локализовать эти вещества. Например, вирусные антигены, компоненты клеточных мембран, гистоны и многие другие вещества можно локализовать этим методом в отдельных клетках или тканях. Белки мышечных волокон, актин и миозин, можно надежно различить при использовании антиактина и антимиозина со связанным флуоресцеином. [c.55]

    Л. а. используют в иммунохим. анализе для определения антител, гормонов, лек. препаратов, вирусных и бактериальных антигенов по концентрации комплекса антиген-антитело. При этом в иммунном флуоресцентном анализе к антителу непосредственно присоединяют флуоресцирующие в-ва, напр. РЗЭ, флуоресцирующие красители (чувствительность метода 10" моль/л), а в иммуноферментном анализе к антителу присоединяют фермент и в результате ферментативной р-ции, сопровождаемой биолюминесценцией, определяют ферментативную активность (чувствительность метода 10" моль/л). [c.614]

    Одна из наиболее трудных проблем при цитометрии связана с неспецифическим окрашиванием. Клеточный сортер с чрезвычайно высокой чувствительностью детектирует флуоресцирующие молекулы — обычно с большей, чем глаз. Поэтому реагенты, используемые при работе с сортером, должны быть более высокой степени очистки, чем для других методов анализа. Как правило, гетерологичные сыворотки должны подвергаться очистке на аффинных сорбентах даже в тех случаях, когда они достаточно специфичны для непосредственного использования при флуоресцентной микроскопии. Моноклональные антитела не всегда требуют очистки. Мы с успехом использовали супернатанты многих продуцирующих моноклональные антитела гибридом, которые культивировали в средах с добавлением и без добавления сыворотки, а также асцитные жидкости (конечно, в соответствующем разведении). В случае непрямых методов флуоресцентного окрашивания влияние контаминирую-щих молекул в культуральных жидкостях сводится к минимуму. Если конъюгированные с флуорохромом антитела строго специфичны по отношению к иммуноглобулинам, то даже при связывании клетками молекул, не относящихся к иммуноглобулинам, эти молекулы не будут детектироваться (по флуоресценции). В случае применения асцитных жидкостей активность моноклональных антител обычно настолько высока, что эффекты контаминирующих иммуноглобулинов и других компонентов чаще всего не выявляются. Однако при прямом конъ-югировании препаратов антител с флуорохромом наличие в них белковых примесей неиммуноглобулиновой природы может стать причиной высокого уровня неспецифического окрашивания. Следовательно, любой конъюгат используемый при сортинге клеток, должен быть тщательно очищен. [c.332]

    Этот бурно развивающийся раздел гистохимии использует способность организма к образованию спещ1-фических антител против чужеродного материала (антигенов). Антиген и антитело взаимодействуют друг с другом с высокой спещ1фичностью. Антигены, антитела, а также комплексы антиген — антитело не видны под микроскопом. Можно, однако, получить конъюгат антител с флуоресцеетным красителем, не вызывая при этом ослабления сродства антител к антигену. При нанесении такого конъюгата на срез ткани происходит специфическая реакция антиген —антитело, которую легко увидеть благодаря характерной флуоресценции в ультрафиолетовом свете при наблюдении в флуоресцентном микроскопе. На этом принципе, основан метод флуоресцирующих антител, позволяющий локализовать специфические реакции антиген — антитело. [c.297]

    Лиганд (например, сАМР или прогестерон) ковалентно связывают с хемилюми-несцирующим соединением (АВЕ1), а антитело делают флуоресцирующим, присоединяя к нему флуоресцеин. Перенос энергии определяется уравнением Ферстера, которое предполагает сближение донора и акцептора на близкое расстояние (около 50 А) [26]. Таким образом, связанный изолюминол излучает зеленый свет, а свободный сохраняет характерное для него голубое свечение. В данной системе можно использовать различные фильтры (полосы излучения достаточно широки), но лучшие результаты получаются при соотношении 460/525 нм. Принцип данного метода заключается в следующем. Антиген (А ) метят хемилюминесцирующим соединением (С), а антитело (АЬ) - флуоресцентным акцептором (Р). При вытеснении А —С определяемым веществом (в данном случае антигеном А и)) неизвестной концентрации расстояние между С и Р становится слишком большим для переноса энергии, так что связанный и свободный антиген легко различимы. [c.498]

    Для определения концентрации веществ в большинстве иммунохимических методов к анализируемому раствору, содержащему определяемое соединение и его меченый аналог, добавляют реагент в количестве, намного меньшем необходимого по уравнению (7.12). Как немеченые, так и меченые соединения взаимодействуют с реагентом практически одана-ково, поэтому отношение их концентраций будет одним и тем же в растворе и в связанном состоянии. При этом возможность применения метода во многом определяется доступностью меченого антигена и соответствующих антител. Для введения метки используют различные реагенты радионуклиды, ферменты, красящие вещества, флуоресцентные и хеми-люминесцентные зонды, ионы металлов. До последнего времени в качестве маркеров антител применяли радиоактивные изотопы этот метод назьшается радиоиммунохимическим анализом (РИА). При этом степень [c.298]

    Другой метод, не связанный с присутствием в белке остатков триптофана, тирозина и фенилаланина, состоит во введении в белок флуоресцирующей метки, например, с помощью флуо-ресцеинизотиоцианата или 5-диметиламинонафталинсульфохло-рида (ДНС-хлорида). Метод применялся для введения флуоресцентной метки в антитела [81, 82], которые затем использовали для обнаружения антигенов. [c.459]

    За последние годы удалось получить антитела ко многим простым гаптенам. Особенно удобной моделью оказались динитро-феиильные гаптены, взаимодействие которых с антителами можно исследовать флуоресцентными методами. [c.172]

    Развитие гистохимической техники позволило использовать антитела, специфичные по отношению к разным ферментам. Эти антитела метят либо флуоресцентными группами, с тем чтобы их можно было исследовать оптическими методами [3337], либо ферритином, что позволяет исследовать их в электронном микроскопе, либо же пероксидазой, которую можно затем определить гистохимически с помощью бензидина [5124]. По локализации конъюгированных антител судят о локализации исследуемого фермента. [c.86]

    Наиболее тонкий метол разделения клеток включает мечение антителами, связанными с флуоресцирующими красителями. С помошью электронного флуоресцентно-активируемого клеточного анализатора (еортера) можно отделить меченые клетки от немеченых. Суть метода заключается в том, что отдельные клетки движутся одна за другой в узком потоке и проходят через лазерный луч, где производится оценка наличия флуоресценции. Затем вибрирующее сопло формирует крошечные капельки, большинство из которых содержит только одну клетку либо вообще не содержит клеток. В момент образования капля [c.202]

    При крайне низких концентрациях компонентов образование простого бинарного комплекса антиген-антитело не может быть за регистрировано ни визуально, ни простыми инструментальным методами, что вызывает необходимость усложнения аналитическо системы. Одним из путей визуализации образования комплекс является использование меченых соединений, в которых метка мо ет легко детектироваться в концентрациях, сопоставимых с опре деляемой концентрацией анализируемого соединения. Как правило от типа метки зависит название анализа — радиоиммунологически анализ, флуоресцентный иммуноанализ, иммунокофакторный ана ЛИЗ, иммуноферментный анализ и т. д. [c.78]

chem21.info


Смотрите также