Что такое антиген? Антитела и антигены. Антитело антиген


Что такое антиген? Антитела и антигены

В организме при проявлении иммунного ответа взаимодействуют антитела и антигены. Однако в определенных условиях последние могут вызвать состояние так называемой специфической безответности – толерантности. Антитела и антигены способствуют формированию иммунологической памяти. Далее рассмотрим второй тип веществ. В статье выясним, что такое антиген.

что такое антиген

Общие сведения

Что такое антиген? Проще говоря, это, как правило, чужеродные соединения. К ним относят нуклеиновые кислоты, полисахариды, белки и их комплексы. При изменении посредством химической модификации природных полимеров можно получить "конъюгированные" вещества. Такие соединения могут быть сформированы на основе белков, которые принадлежат непосредственно самому реципиенту. Аутологичное вещество, денатурированное химическим либо физическим способом, также может превращаться в антиген.

Определение

В организм могут проникнуть биополимеры либо синтетические их аналоги, способные вызвать иммунный ответ. Эти соединения и называются антигенами. Они способствуют выработке клеток-эффекторов тимической природы. Появляющиеся на фоне иммунной реакции антитела начинают специфическим образом взаимодействовать с антигенами или химическими соединениями, имеющими сходное строение. Если последние не провоцируют защитного ответа, то их называют гаптенами. Именно они провоцируют иммунологическую толерантность. Способность вызывать защитную реакцию имеют синтетические полипептиды, выступая в качестве белковых антигенов. Однако необязательно их первичная и пространственная структура должна быть подобна таковой какому-либо конкретному белковому соединению. Существенным фактором проявления антигенных свойств у этих веществ заключается в образовании стойкой пространственной структуры. В связи с этим полимеры, сформированные из одной аминокислоты (гомополимеры) не обладают свойствами вызывать иммунный ответ. Антигенные способности появляются у полипептидов, при образовании которых задействованы 2 аминокислоты.

антитела и антигены

Вопросы исследования

Что такое антиген? Классическая иммунология называет таким веществом целую клетку животного либо бактериального происхождения. Однако это неверно с химической точки зрения. Выше сказано, что такое антиген по сути. Это не клетка, в которой присутствует большое количество нуклеиновых кислот, белков, полисахаридов. Антигены человека, полученные в очищенном виде, могут использоваться для индукции иммунной реакции. При этом она будет специфична для того или иного биополимера. Рассматривая очищенную структуру в качестве индивидуального антигена, любое их сочетание необходимо описывать как семейство отдельных соединений. Данный термин может применяться при обозначении спонтанно агрегирующего определенного биополимера. Примером могут служить некоторые антигены вирусов или бактерий. Так, сократительный белок жгутиков грамотрицательных микроорганизмов рода Сальмонелл, флагеллин может обнаруживаться как в полимеризованном, так и мономерном виде. И в том, и другом случае данный антиген может индуцировать формирование антител, при том, что условия для этого разные. В частности, полимер феллагелина тимусонезависим, а мономер – тимусозависим.

анализ на антиген

Связь с молекулярной массой

Установить ее можно только при сравнении веществ одного класса. Например, это касается различных белков с однотипной третичной и вторичной структурами: фибриллярных и глобулярных. В подобных случаях можно устанавливать прямую зависимость между способностью полимера индуцировать формирование антител и его молекулярной массой. Данная закономерность, тем не менее, не является абсолютной. Кроме прочего, она зависит от иных свойств соединения, как химических, так и биологических.

Степень проявления свойств

Выраженность антигенных характеристик белков, выступающих в качестве наиболее обширного и значимого класса, будет зависеть от степени удаленности в эволюционном отношении донора, от которого получено соединение, и реципиента, которому оно вводится. Корректным сравнительный анализ будет лишь в том случае, если при оценке использованы однотипные вещества. К примеру, если альбумином сыворотки крысы и человека иммунизировать мышей, то на первый ответ будет более выражен. Если биополимер отличается повышенной чувствительностью к расщеплению, то его свойства будут менее выражены, чем у вещества, проявляющего большую стойкость к ферментативному гидролизу. Так, в случае использования синтетических полипептидов либо белковых конъюгатов в качестве антигенов, более выраженным будет ответ на то вещество, в составе которого присутствуют неприродные D–аминокислоты. Решающая роль в проявлении иммунного ответа отводится генотипу реципиента.

антигены вирусов

Детерминантные группы

Ими обозначают молекулярные участки биополимера, синтетического его аналога либо конъюгированного антигена, которые распознаются антигенсвязывающими В-лимфоцитными рецепторами и антителами. В молекуле обычно присутствует несколько детерминантных групп, различных по своему строению. Каждая из них может по нескольку раз повторяться. Если в молекуле соединения присутствует только одна группа с определенным строением, формирования против нее антител происходить не будет. В процессе увеличения идентичных комплексов будет возрастать и иммунный ответ на них. Однако этот процесс будет идти до определенного момента, после чего будет снижаться и может совершенно не наблюдаться впоследствии. Данное явление было исследовано в процессе использования конъюгированных антигенов с разным количеством заместителей, выполнявших задачу детерминантной группы. Отсутствие иммунной реакции на биополимеры с повышенной эпитопной плотностью обусловлено механизмом активации лимфоцитов В-группы.

антигены эритроцитовРаково-эмбриональный антиген

Он представляет собой одну из разновидностей белков нормальной ткани, которая у здоровых людей вырабатывается в незначительном объеме клетками некоторых органов. РЭА по своей химической структуре является соединением углеводов и белка. Назначение его у взрослых неизвестно. Однако в период внутриутробного формирования он достаточно интенсивно синтезируется органами системы пищеварения, выполняя при этом достаточно важные задачи. Они связаны со стимуляцией клеточного размножения. Раково-эмбриональный антиген выявляется в тканях пищеварительных органов, но в достаточно малом количестве. Название данного онкомаркера отчасти характеризует его биологическую природу, но по большей части все же свойства, являющиеся ценными при лабораторном исследовании. Термин "эмбриональный" имеет связь с физиологическими задачами во время развития в дородовой период, "антиген" свидетельствует о возможности идентификации его в биологических средах при помощи иммунохимического метода связывания. При этом непосредственно в организме он не проявляет каких-либо свойств. В норме у здорового организма концентрация РЭА достаточно низкая. На фоне же онкологического процесса его уровень возрастает достаточно резко, достигая довольно больших показателей. В этой связи его характеризуют как тканевый маркер онкологических патологий, или онкомаркер.

антиген определение

Уровень РЭА

Анализ на антиген применяется в диагностике разных злокачественных новообразований, главным образом рака прямой и толстой кишки. Исследование осуществляется на ранних стадиях патологий, в процессе наблюдения за течением заболевания и контроля над эффективностью терапевтических мероприятий. На фоне рака толстой и прямой кишки тест отличается наивысшей чувствительностью. Именно это позволяет применять его при первичной диагностике. После успешного выполнения операции по удалению всей опухолевой ткани концентрация РЭА приходит в норму максимум спустя два месяца. Регулярные анализы впоследствии позволяют оценивать состояние пациента после получения им лечения. Обнаружение высокого уровня РЭА позволяет своевременно выявить рецидив патологии. При снижении содержания антигена на фоне терапии специалисты делают вывод о результативности лечебного воздействия.

Повышение концентрации РЭА: диапазон патологий

Однако тест не считается для опухолей абсолютно специфичным. Повышение уровня РЭА может отмечаться на фоне разных заболеваний внутренних органов, имеющих воспалительную и другую природу. У 20-50 % пациентов с доброкачественными патологиями поджелудочной железы, кишечника, легких и печени концентрация антигена немного увеличивается. То же самое наблюдается на фоне циррозов, хронических гепатитов, язвенных колитов, муковисцидоза, эмфиземы, бронхитов, болезни Крона, панкреатитов, пневмонии, аутоиммунных болезней, туберкулеза. Кроме этого, повышение уровня может обуславливаться не заболеванием, а, к примеру, регулярным приемом спиртного либо курением.

антигены человека

Особенности переливания крови

Основной из них является специфичность и индивидуальность, которыми обладают антигены эритроцитов. При несовместимости биополимеров реципиента и донора переливание крови категорически запрещено. В противном случае неизбежны патологические процессы и даже смерть больного. В иммуногенетике для тестирования и исследования эритроцитарных антигенов используются методы серологических реакций. К ним, в частности, относят реакции гемолиза, преципитации, агглютинации. Эритроцитарные гены представлены в виде сложных биополимерных макромолекул. Они накапливаются на строме (оболочке) и соединяются с прочими молекулами соединений. Для каждой особи характерен индивидуальный химический состав и собственная структура.

fb.ru

определение, виды. Антигены и антитела :: SYL.ru

О том, что такое антиген и антитела, можно рассказать немало интересного. Они имеют непосредственное отношение к человеческому организму. В частности, к иммунной системе. Впрочем, обо всём, что касается данной темы, стоит рассказать более подробно.

что такое антиген

Общие понятия

Антигеном является каждое вещество, рассматриваемое организмом в качестве потенциально опасного или чужеродного. Обычно это белки. Но нередко даже такие простые вещества, как металлы, становятся антигенами. Они преобразуются в них, сочетаясь с белками организма. Но в любом случае, если вдруг иммунитет их распознаёт, начинается процесс выработки так называемых антител, которые являются особым классом гликопротеинов.

Это иммунный ответ антигену. И важнейший фактор так называемого гуморального иммунитета, который является защитой организма от инфекций.

Рассказывая о том, что такое антиген, нельзя не упомянуть, что для каждого такого вещества формируется отдельное, соответствующее ему антитело. Как организм распознаёт, какое именно соединение должно образоваться для того или иного чужеродного гена? Здесь не обходится без связи с эпитопом. Это часть макромолекулы антигена. И именно её распознаёт иммунная система перед тем, как плазматические клетки начнут синтезировать антитело.

антигены и антитела

О классификации

Рассказывая о том, что такое антиген, стоит отметить и классификацию. Эти вещества делятся на несколько групп. На шесть, если быть точнее. Они различаются по происхождению, природе, молекулярной структуре, степени иммуногенности и чужеродности, а также по направленности активации.

Для начала стоит сказать пару слов о первой группе. По происхождению виды антигенов делятся на те, которые возникают вне организма (экзогенные), и на те, что образуются внутри него (эндогенные). Но это ещё не всё. К этой группе также относятся аутоантигены. Так называются вещества, образующиеся в организме в физиологических условиях. Их структура неизменна. Но ещё есть неоантигены. Они образуются в результате мутаций. Структура их молекул изменчива, и после деформации они обретают черты чужеродности. Они представляют особый интерес.

Неоантигены

Почему их относят в отдельную группу? Потому что они индуцируются онкогенными вирусами. И их тоже разделяют на два вида.

К первому относятся опухолеспецифические антигены. Это уникальные для человеческого организма молекулы. На нормальных клетках они не присутствуют. Их возникновение провоцируют мутации. Они происходят в геноме опухолевых клеток и приводят к формированию клеточных белков, от которых берут начало особые вредоносные пептиды, изначально представленные в комплексе с молекулами класса HLA-1.

Ко второму классу принято относить опухолеассоциированные белки. Те, которые возникли на нормальных клетках ещё во время эмбрионального периода. Или в процессе жизни (что случается очень редко). И если возникают условия для злокачественной трансформации, то эти клетки распространяются. Они ещё известны под таким названием, как раково-эмбриональный антиген (РЭА). И он присутствует в организме каждого человека. Но на очень низком уровне. Раково-эмбриональный антиген может распространиться лишь в случае возникновения злокачественных опухолей.

Кстати, уровень РЭА является ещё и онкологическим маркером. По нему врачи способны определить, болен ли человек раком, на какой стадии находится заболевание, наблюдается ли рецидив.

иммунный ответ

Другие типы

Как уже было сказано ранее, существует классификация антигенов по природе. В данном случае выделяют протеиды (биополимеры) и небелковые вещества. К которым относятся нуклеиновые кислоты, липополисахариды, липиды и полисахариды.

По молекулярной структуре различают глобулярные и фибриллярные антигены. Определение каждого из этих типов складывается из самого названия. Глобулярные вещества имеют шаровидную форму. Ярким «представителем» является кератин, обладающий очень высокой механической прочностью. Именно он в немалом количестве содержится в ногтях и волосах человека, а также в птичьих перьях, клювах и рогах носорогов.

Фибриллярные антигены, в свою очередь, напоминают нить. К ним относится коллаген, являющийся основой соединительной ткани, обеспечивающей её эластичность и прочность.

Степень иммуногенности

Ещё один критерий, по которому различают антигены. К первому типу относятся вещества, являющиеся полноценными по степени иммуногенности. Их отличительной особенностью является большая молекулярная масса. Именно они вызывают в организме сенсибилизацию лимфоцитов или синтез специфических антител, о которых упоминалось ранее.

Также принято выделять неполноценные антигены. Их ещё называют гаптенами. Это сложные липиды и углеводы, которые не способствуют образованию антител. Но они вступают с ними в реакцию.

Правда, есть способ, прибегнув к которому, можно заставить иммунную систему воспринимать гаптен как полноценный антиген. Для этого нужно укрепить его при помощи белковой молекулы. Именно она определит иммуногенность гаптена. Полученное таким образом вещество принято называть конъюгатом. Для чего оно необходимо? Его ценность весома, ведь именно используемые для иммунизации конъюгаты дают доступ к гормонам, низкоиммуногенным соединениям и лекарственным препаратам. Благодаря им удалось улучшить эффективность лабораторной диагностики и фармакологической терапии.

раково эмбриональный антиген

Степень чужеродности

Ещё один критерий, по которому классифицируются вышеупомянутые вещества. И его также важно отметить вниманием, рассказывая про антигены и антитела.

Всего по степени чужеродности выделяют три типа веществ. К первому относятся ксеногенные. Это антигены, являющиеся общими для организмов, находящихся на различных уровнях эволюционного развития. Ярким примером можно считать результат эксперимента, проведённого в 1911 году. Тогда учёный Д. Форсман успешно иммунизировал кролика суспензией органов другого существа, которым была морская свинка. Оказалось, что данная смесь не вступила в биологический конфликт с организмом грызуна. И это является ярким примером ксеногенности.

А что такое антиген группового / аллогенного типа? Это эритроциты, лейкоциты, плазменные белки, являющиеся общими для организмов, генетически не родственных, но относящихся к одному виду.

К третьей группе относятся вещества индивидуального типа. Это антигены, являющиеся общими лишь для генетически идентичных организмов. Ярким примером в данном случае можно считать однояйцевых близнецов.

классификация антигенов

Последняя категория

Когда проводится анализ на антигены, то в обязательном порядке выявляются вещества, отличающиеся по направленности активации и обеспеченности иммунного реагирования, которое проявляется в ответ на внедрение чужеродного биологического компонента.

Таких типов тоже три. К первому относятся иммуногены. Это очень интересные вещества. Ведь именно они способны вызвать иммунный ответ организма. Примером являются инсулины, альбумины крови, белки хрусталика и т. д.

Ко второму типу относятся толерогены. Данные пептиды не только подавляют иммунные реакции, но и способствую развитию неспособности отвечать на них.

К последнему классу принято относить аллергены. Они практически ничем не отличаются от пресловутых иммуногенов. В клинической практике эти вещества, воздействующие на систему приобретенного иммунитета, применяют в диагностике аллергических и инфекционных заболеваний.

Антитела

Немного внимания следует уделить и им. Ведь, как можно было понять, антигены и антитела неотделимы.

Итак, это белки глобулиновой природы, образование которых провоцирует воздействие антигенов. Они делятся на пять классов и обозначаются следующими буквенными сочетаниями: IgM, lgG, IgA, IgE, IgD. Стоит знать о них лишь то, что состоят они из четырёх полипептидных цепей (2 лёгких и 2 тяжёлых).

Строение всех антител идентично. Единственным отличием является дополнительная организация основной единицы. Впрочем, это уже другая, более сложная и специфичная тема.

 антигены определение

Типология

Антитела имеют свою классификацию. Весьма объёмную, кстати. Поэтому вниманием отметим лишь некоторые категории.

Самыми мощными являются антитела, которые вызывают гибель паразита или инфекции. Ими являются иммуноглобулины IgG.

К более слабым относятся белки гамма-глобулиновой природы, которые не убивают возбудитель, а лишь обезвреживают токсины, вырабатываемые им.

Ещё принято выделять так называемых свидетелей. Это такие антитела, наличие в организме которых говорит о знакомстве иммунитета человека с тем или иным возбудителем в прошлом.

Также хотелось бы отметить вещества, известные как аутоагрессивные. Они, в отличие от ранее упомянутых, наносят организму вред, а не оказывают помощь. Эти антитела вызывают повреждение или разрушение здоровых тканей. А ещё есть антиидиотипические белки. Они обезвреживают избыток антител, участвуя, таким образом, в иммунной регуляции.

виды антигенов

Гибридома

Об этом веществе стоит рассказать напоследок. Так называется гибридная клетка, которую удаётся получить благодаря слиянию клеток двух видов. Одна из них может образовать антитела В-лимфоцитов. А другая берётся из опухолевых образований миеломы. Слияние осуществляется при помощи особого агента, который нарушает мембрану. Им является либо вирус Сёндай, либо полимер этиленгликоля.

Для чего гибридомы необходимы? Всё просто. Они являются бессмертными, поскольку состоят наполовину из клеток миеломы. Их успешно размножают, подвергают очистке, потом стандартизируют, а затем используют в процессе создания диагностических препаратов. Которые помогают в исследовании, изучении и лечении раковых заболеваний.

На самом деле об антигенах и антителах можно рассказать ещё немало интересного. Однако это такая тема, для полноценного изучения которой необходимо знание терминологии и специфики.

www.syl.ru

АНТИГЕН-АНТИТЕЛО РЕАКЦИЯ — Большая Медицинская Энциклопедия

АНТИГЕН—АНТИТЕЛО РЕАКЦИЯ — образование комплекса между антигеном и направленными к нему антителами. Изучение Антиген-антитело реакции имеет большое значение для понимания механизма специфического взаимодействия биологических макромолекул и для выяснения механизма серологических реакций.

Различают две фазы реакции, существенно отличающиеся между собой по механизму и скорости протекания. В первой фазе реакции происходит соединение детерминантной группы антигена (см.) или гаптена (см.) с группировками в активном центре антитела (см.). Этот высокоспецифический процесс протекает в водных растворах с большой скоростью. Антитела обладают минимум двумя (антитела IgG-класса) и максимум десятью (для IgM-ан-тител) активными центрами, которые конфигурационно комплементарны детерминантной группе антигена. Поэтому с поливалентным антигеном (то есть с антигеном, содержащим несколько детерминантных групп) может происходить образование сложных по составу агрегатов антиген — антитело с молекулярной формулой: (Ат)x (Аг)y, где Ат — антитело и Аг — антиген. Агрегаты этого иммунного комплекса утрачивают растворимость в изотонических растворах и выпадают в осадок. Эта вторая неспецифическая фаза антиген — антитело реакция протекает медленнее первой — специфической, причем ее скорость зависит от многих внешних факторов и в первую очередь от солевого состава среды. Характер реакций, протекающих во второй фазе, определяется в значительной мере физическими свойствами антигена. В случае, если в реакции участвуют низкодисперсные антигены (клетки, частицы инертного носителя с адсорбированным на них антигеном), наблюдается феномен агглютинации (см.). Высоко дисперсные антигены (полисахариды, белки и их комплексы) образуют с антителами преципитаты (флоккуляты). В ходе второй фазы антиген — антитело реакция происходит также присоединение к иммунному комплексу комплемента (см. Комплемент, Реакция связывания комплемента), что также служит высокочувствительным серологическим тестом. На основании сведений о механизмах, лежащих в основе второй фазы антиген — антитело реакция, представляется возможным подойти к объяснению таких важных в иммунологическом отношении следствий формирования иммунного комплекса, как нейтрализация токсина антитоксином (см. Токсин-антитоксин реакция), активация системы комплемента, реакция немедленной гиперчувствительности и пр. Вместе с тем необходимо иметь в виду, что трудно судить о специфической стадии антиген — антитело реакция на основании существенно иной по механизму второй фазы реакции. В силу этого исследования тонких физических и химических механизмов антиген — антитело реакция осуществляются преимущественно с использованием гаптенов с одной детерминантной группой, которые способны образовывать с направленными к ним антителами только растворимые комплексы.

В случае бивалентных антител (например, антител класса IgG) их реакцию с моновалентным гаптеном (Г) можно записать в виде уравнения: к,

где к1 и к2— соответственно константы скоростей прямой и обратной реакций. В силу того что при реакции гаптена со специфическим антителом не происходит каких-либо видимых превращений, судить о взаимодействии приходится с помощью различных физических и физико-химических методов, основанных на оценке количества связанного гаптена по изменению диффузионного равновесия последнего в присутствии антитела (метод равновесного диализа), либо по изменению оптических свойств гаптена в иммунном комплексе. Величина константы скорости прямой реакции, полученная в эксперименте, достигает 106—107 л•молъ-1сек-1, в то время как обратная реакция значительно медленнее: 1—50 сек-1.

Недостаточное совершенство измерительной техники не позволяет оценить максимальную скорость прямой реакции; из теоретических соображений она могла бы достигать величины 1,5•109 л•моль-1сек-1.

В силу столь больших скоростей прямой реакции соединение антитела с гаптеном завершается уже в процессе смешивания реагентов. Поэтому на практике существенно проще измерять константу сродства (ка=к1/к2), величина которой для ряда систем, рассчитанная с использованием метода равновесного диализа, находится в пределах 105—109 л/моль.

На основании данных о величине ка при различных температурах по уравнению Вант-Гоффа можно вычислить термодинамические параметры реакции гаптен — антитело.

Изменения свободной энергии (дельтаF) при взаимодействии гаптен — антитело имеют порядок величин от —7 до —12 ккал/моль. Это означает, что даже при высоких разведениях степень ассоциации остается еще значительной. Хотя в ряде случаев не отмечались существенные изменения энтропии при формировании комплекса гаптен — антитело (ΔS=0), для многих систем были получены положительные значения ΔS, указывающие на увеличение энтропии, а не на ее уменьшение, что следовало бы ожидать в силу большей упорядоченности системы при образовании иммунного комплекса. Наблюдаемый эффект обусловлен, по-видимому, тем, что гаптен экранирует поверхность активного центра антитела с высвобождением ранее связанных с ней молекул воды. В пользу этого свидетельствуют в свою очередь данные о значительном увеличении парциального специфического объема при реакции гаптен — антитело, полученные с помощью дилатометрии (см.).

До последнего времени многие вопросы, касающиеся механизма антиген — антитело реакция, остаются открытыми. О природе связей между детерминантной группой антигена и группировками в активном центре антитела можно судить на основании оптических свойств связанного гаптена.

Так, с помощью спектрофотометрии и спектрофлуориметрии было установлено для ряда гаптенов (представляющих собой ароматические соединения), что при связывании со специфическим антителом они оказываются в неполярном микроокружении и, следовательно, способны фиксироваться в активном центре за счет гидрофобных взаимодействий. В случае антител к нитрофенильным производным было продемонстрировано образование в активном центре комплекса с переносом электрона между остатком триптофана и гаптенной группировкой. Наконец, не вызывает сомнения возможность образования между аминокислотными остатками в активном центре антитела и детерминантными группами антигенов водородных связей и дальнодействующих электростатических взаимодействий. Все это, однако, не объясняет с достаточной ясностью механизм специфической фазы реакции антиген — антитело. Судя по данным, полученным с помощью физических других методов, в момент связывания антителом детерминантной группы антигена возникает конформационная перестройка собственно активного центра антитела и расположенных вне его участков молекулы. При этом молекула антитела становится более устойчивой к различным денатурирующим воздействиям, равно как и к гидролизу протеолитическими ферментами. Очевидно, в процессе связывания детерминантной группы антигена происходит адаптация к нему активного центра антитела; этот процесс может быть подобен перестройке активного центра фермента при связывании субстрата.

Взаимодействие молекулы антигена с антителом или его активным Fab-фрагментом сопровождается изменениями пространственной структуры молекулы антигена. Так, миоглобин превращается в апомиоглобин при взаимодействии с антителами, направленными к апомиоглобину, а неактивная, полученная от соответствующих мутантов ß-галактозидаза превращается в активный фермент после реакции с антителами к активной форме ß-галактозидазы. В экспериментах с синтетическими полипептидами, использованными в качестве антигенов, было отчетливо продемонстрировано, что антитела к α-спиральной форме полипептида способны стабилизировать эту структуру и, более того, обеспечивать структурный переход пептидов из формы неупорядоченного клубка в α-спираль. Следует подчеркнуть, что наблюдаемые под действием антител структурные переходы в молекуле антигена происходят в процессе первой фазы реакции, а не за счет эффектов, возникающих при агрегации иммунных комплексов. Это несомненно в силу того, что структурные перестройки в антигене вызывают одновалентные активные Fab-фрагменты антител, неспособные обеспечить агрегацию антигена.

В силу структурной гетерогенности антител найденные в эксперименте константы сродства (ка) данного гаптена к антигену представляют собой усредненную величину многих констант, отражающих особенности связывания гаптена различными молекулами антител. Распределение антител по константам сродства описывается кривой Гаусса. Ввиду того что в составе популяции молекул антител всегда присутствуют такие, которые отличаются относительно низкой степенью сродства, число молекул гаптена, связанных на моль бивалентного антитела, достигает величины 2 только при заметном избытке гаптена. Путем преципитации антител к динитрофенильной группе возрастающими количествами специфического антигена удалось получить несколько фракций антител, отличающихся у одного и того же животного по сродству к гаптену на четыре порядка (от 1,0•105 до 1,1•109). При повторных иммунизациях величина ка для более поздних антител возрастает особенно заметно в том случае, когда для иммунизации применяются небольшие количества антигена. Очевидно, антиген соединяется в организме в первую очередь с рецепторами предшественников антителообразующих клеток, отличающихся наибольшим сродством к антигену. При иммунизации большими дозами антигена гетерогенность антител по величине ка возрастает за счет вовлечения в иммунный ответ клеток с антителоподобными рецепторами, характеризующимися низким сродством к антигену и обладающими способностью синтезировать только антитела с низкой степенью сродства.

При оценке кинетических параметров антиген — антитело реакция часто прибегают к определению константы равновесия (к), которую рассчитывают в эксперименте по ингибированию антиген — антитело реакция с помощью специфического гаптена на основании уравнения:

[АгАт] = к [ГАт] [Аг]/[Г],

где каждая величина в скобках означает молекулярную концентрацию вещества. Величина (к) в общем случае близка по значению величине ка. Метод ингибирования реакции преципитации нашел самое широкое применение для оценки структуры детерминантных групп природных антигенов — белков и полисахаридов. В этом случае в качестве гаптенов используют олигосахариды и пептиды, выделенные из природных соединений или полученные синтетическим путем.

Рис. 1. Схема решетчатой структуры иммунного преципитата.

Наряду с изучением механизма первой фазы антиген — антитело реакция в течение многих лет идет интенсивное изучение второй фазы реакции и главным образом реакции преципитации (см.). Сейчас не вызывает сомнения, что феномен преципитации связан с образованием решетчатых структур благодаря поливалентной природе антигена и антитела. Теория «решетки», наиболее четко сформулированная впервые Марраком (J. R. Marrack), находит подтверждение в многочисленных фактах, основные из которых следующие: 1) одновалентные гаптены не дают реакции преципитации, в то время как при наличии в молекуле гаптена двух и более детерминантных групп преципитат в присутствии антитела, как правило, образуется; 2) полученные в результате расщепления молекулы антитела одновалентные Fab-фрагменты не преципитируют поливалентный антиген, хотя и соединяются с ним; 3) гибридные искусственно полученные бивалентные F(ab)2-фрагменты антител, каждый из моновалентных фрагментов которых принадлежит различным по специфичности молекулам антител, преципитируют лишь в присутствии обоих антигенов, к которым они направлены, и 4) бивалентные гаптены, содержащие две различные по структуре детерминантные группы, способны образовывать преципитат лишь в присутствии антител к обеим детерминантным группам. Прямые доказательства образования решетчатых структур при формировании преципитата были получены с помощью электронной микроскопии. Схематически эти структуры представлены на рис.1.

Рис. 2. Конформация молекулы антитела класса IgG до взаимодействия с антигеном (вверху) и в составе иммунного комплекса, образованного в зоне эквивалентности (внизу). VL и CL — основные структурные субъединицы (домены) легкой цепи, VH, Ch2-Сh4—домены тяжелой цепи Черный прямоугольник — комплементсвязывающий центр. Активный центр сформирован VH- и VL-доменами, входящими в состав Fab-фрагмента.

Наличием минимум двух валентностей у антигена и антитела не исчерпываются требования, необходимые для формирования иммунных преципитатов, а также для реализации других процессов, протекающих во второй фазе реакции антиген — антитело. Так, хотя антитела, относящиеся к классам IgA и IgE, содержат по два активных центра, они по существу лишены способности участвовать в реакциях преципитации и агглютинации и связывать комплемент в присутствии специфического антигена. По-видимому, основные различия между преципитирующими и непреципитирующими антителами кроются в способности первых образовывать мостики между молекулами антигена либо в силу наперед заданного особенностями структуры большого расстояния между активными центрами (как это имеет место в случае антител IgM-класса), либо при условии достаточной гибкости молекулы антитела, обеспечивающего возможность увеличения расстояния между активными центрами в присутствии антигена. Последнее присуще антителам IgG-класса благодаря вращению Fab-фрагментов, несущих активные центры в отношении Fc-фрагмента (см. Антитела). Так, согласно данным электронной микроскопии в присутствии низкомолекулярного бивалентного гаптена, взаимодействующего с обоими активными центрами антитела, угол между Fab-фрагментами составляет 10°, но может увеличиваться до 180° при соотношении гаптен — антитело (или антиген — антитело), обеспечивающем образование крупных агрегатов, в состав которых входит 4 и более молекул антител. Указанные изменения конформации молекулы антитела IgG-класса представлены на рис. 2. После взаимодействия с антигеном молекула антитела превращается из Y-образной в стержнеобразную с максимально удаленными друг от друга активными центрами, расположенными на дистальных концах Fab-фрагментов.

Необходимость конформационной перестройки антител IgG и IgM классов при участии антигена очевидна и для реализации других процессов, протекающих во второй фазе антиген — антитело реакция, и, в частности, для активации системы комплемента. Эти конформационные изменения затрагивают область молекулы, содержащую специализированный центр для связывания первого компонента комплемента (см. Комплемент, Реакция связывания комплемента). В результате структурной перестройки этого центра, расположенного в Fc-фрагменте (рис.2), по-видимому, возрастает его сродство к первому компоненту комплемента, что необходимо для превращения последнего в активный фермент — CI-эстеразу. Несомненные доказательства изменения третичной структуры молекулы антитела при образовании ими комплексов с антигеном в зоне эквивалентности (то есть при соотношении реагентов, обеспечивающих максимальную преципитацию и связывание комплемента) были получены методом дисперсии оптического вращения. Необходимо подчеркнуть, что увеличение отрицательного левовращения антител наблюдалось именно в составе указанных комплексов и не имело места в комплексах, образованных в избытке антигена. Это показывает, что конформационные изменения в больших по размеру иммунных агрегатах связаны с изменениями структуры участков молекулы антитела, расположенных вне области их активных центров. Таким образом, необходимо констатировать возникновение двух видов конформационных изменений молекулы антитела после се взаимодействия с антигеном. Первые из них, как указывалось выше, возникают непосредственно в области активного центра антитела и в его ближайшем окружении в ходе первой фазы реакции вне зависимости от степени агрегированности иммунного комплекса. Вторые возникают непосредственно во второй фазе реакции в результате формирования агрегатов, включающих не менее двух—четырех молекул антител, и сопряжены со структурной перестройкой удаленных от активного центра областей молекулы антитела, в частности его Fc-фрагмента.

Значительный интерес представляет вопрос о диссоциации комплекса антиген — антитело, который включает в себя проблему обратимости конформационных изменений молекулы антитела, сопровождающих процесс ее взаимодействия с антигеном. Выше уже отмечалось, что обратная реакция антиген—антитело протекает значительно медленнее прямой. В зоне эквивалентности в состав иммунного комплекса вовлекаются целиком как антиген, так и антитело, в силу чего практически ощутимой диссоциации при этом не наблюдается. Однако диссоциация иммунного комплекса в относительно мягких условиях все же возможна уже хотя бы потому, что между партнерами реакции возникают лишь нековалентные взаимодействия. Можно выделить два основных пути, с помощью которых может быть частично или полностью разделен уже сформировавшийся комплекс антиген — антитело. Первый состоит в вытеснении антител избытком антигена (гаптена), а второй — в воздействии на иммунный комплекс внешних факторов, приводящих к разрыву связей (уменьшению сродства) между антигеном и антителом.

Уже при промывании иммунного преципитата физиологическим раствором из его состава можно выделить постоянно уменьшающиеся количества антител и лишь следовые количества антигена. Процесс диссоциации можно записать в форме уравнения:

где n и m соответствуют числу молекул Аг и Ат в комплексе и числу свободных молекул Ат.

Эффективность диссоциации иммунного комплекса существенно возрастает в присутствии большого избытка антигена (гаптена). На практике для этой цели используют моновалентные гаптены, характеризующиеся относительно небольшой степенью сродства к антителам и способные вытеснять из комплекса в первую очередь антитела с относительно низким сродством к антигену. Естественно, антитела элюируются в форме комплекса с гаптеном. Последний в силу относительно низкого сродства к антителу может быть удален либо продолжительным диализом, либо с применением ионообменной хроматографии. Примером такого метода изоляции антител может служить выделение антител к динитрофенильной группе с использованием в качестве гаптена динитрофенола.

Частичная диссоциация комплекса антиген—антитело может быть достигнута в общем случае при повышении температуры. Исходя из того, что антиген — антитело реакция является экзотермической, вполне закономерно, что большинство комплексов антиген — антитело, сформированных при t° 0° может быть хотя бы частично диссоциировано при повышении t° до 40° и выше. Степень термической диссоциации существенно варьирует в зависимости от природы антитела. Особенно эффективно диссоциируют при t° 37— 40° иммунные комплексы, образованные так называемыми Холодовыми антителами, направленными, как правило, к антигенам мембраны эритроцитов.

Наиболее универсальным способом диссоциации иммунных комплексов, образованных самыми разнообразными антителами, служит их обработка разбавленными кислотами и щелочами, а также концентрированными растворами амидов (мочевины, солянокислого гуанидина). Увеличение константы диссоциации комплекса антиген — антитело в этих условиях связано, очевидно, с разрывом нековалентных связей и изменением конформации молекулы антитела (антигена), сопровождающихся, в частности, перестройкой активного центра антитела и детерминантной группы антигена. В числе диссоциирующих комплекс антиген — антитело агентов использовались также полианионы (полиметакрилат и полистиролсульфонат) и концентрированные растворы нейтральных солей.

Обратимость конформационных изменений антитела после его извлечения из иммунного комплекса нуждается еще в дальнейшем изучении. При элюции антител кислотой или щелочью (особенно последней) закономерно отмечают снижение их преципитирующей активности, хотя способность связывать антиген остается, по-видимому, без существенных изменений. Незначительно изменяется сродство антител и после их элюции концентрированной (8М) мочевиной. Судя по этим данным, структура активного центра антитела, извлеченного из иммунного комплекса, возвращается в целом к исходной. Необратимые изменения, по крайней мере у части молекул, претерпевают структуры, ответственные за способность антител участвовать во второй фазе антиген — антитело реакция. В свете современных представлений о механизме антиген — антитело реакция и механизме реакции преципитации можно допустить, что у антител, извлеченных из иммунного комплекса щелочью или кислотой, уменьшается свобода вращательных движений Fab-фрагментов молекулы, хотя нельзя исключить и другие повреждения.

Библиография: Волькенштейн М. В. Физика ферментов, М., 1967, библиогр.; Гауровиц Ф. Иммунохимия и биосинтез антител, пер. с англ., М., 1969, библиогр.; Кульберг А. Я. Молекулярные основы эффекторных функций иммуноглобулинов, Усп. совр. биол., т. 7 6, №1,с. 110,1973, библиогр.; КэботЭ. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968, библиогр.; Н е з л и н Р. С. Строение биосинтеза антител, М., 1972; Руководство по иммунологии, под ред. О. Е. Вязова и Ш. X. Ходжаева, М., 1973; Cathou R. Е. а. Werner Т. G. Hapten stabilization of antibody conformation, Biochemistry, v. 9, p. 3149, 1970; E d e 1 m a n G. M. a. Gall W. E. The antibody problem, Ann. Rev. Biochem., v. 38, p. 415, 1969, bibliogr.; Green N. M. Electron microscopy of the immunoglobulins, Advanc. Immunol., v. 11, p. 1, 1969, bibliogr.; Marrack J. R. a. Richards C. B. Light-scattering studies of the formation of aggregates on mixtures of antigen and antibody, Immunology, v. 20, p. 1019, 1971, bibliogr.; О h t a Y., G i 1 1 T. J. a. Leung G. S. Volume changes accompanying the antibody-antigen reaction, Biochemistry, v. 9, p. 2708, 1970; Schechter B., Conway-Jacobs A. a. S e 1 a M. Conformational changes in a synthetic antigen induced by specific antibodies, Europ. J. Biochem., v. 20, p. 321, 1971.

А. Я. Кульберг.

xn--90aw5c.xn--c1avg

Антиген — антитело реакция - это... Что такое Антиген — антитело реакция?

специфическое взаимодействие антител с соответствующими антигенами, в результате которого образуются комплексы антиген — антитело (иммунные комплексы). Часто конечным результатом этой реакции является связывание токсинов, обездвиживание вирулентных бактерий, нейтрализация вирусов. Антигенсвязывающие центры молекулы антитела могут связывать несколько неродственных антигенов. Такие антигены обладают структурным сходством и носят название перекрестно реагирующих. Гомогенная популяция молекул антител может связывать различные молекулы с очень малым структурным сходством или вовсе несхожие. В этом случае говорят о мультиспецифическом связывании, которое объясняют образованием связей в различных участках внутри антигенсвязывающих центров. Реакция антиген — антитело протекает в две фазы, которые различаются между собой по механизму и скорости. Первая фаза — специфическое соединение активного центра антитела с соответствующими группами антигена или гаптена (см. Антигены); вторая — неспецифическая фаза, следующая за первой, — визуально наблюдаемая реакция. При взаимодействии антител с простыми гаптенами вторая фаза, как правило, отсутствует. При некоторых условиях, например в отсутствие солей, первая фаза может осуществиться, а вторая — нет. Первая фаза протекает всегда быстро, а вторая иногда очень медленно.

Соединение антигена с антителом обратимо; прочность соединения, называемая аффинитетом, может быть количественно измерена с помощью определения константы ассоциации. Существует также термин авидности антител, который употребляется для описания суммарной силы взаимодействия поливалентного антитела с полидетерминантным антигеном.

В большинстве случаев популяции антител, появляющиеся в сыворотке иммунизированных животных, представляют собой гетерогенный набор молекул с разными антигенсвязывающими центрами и с различной аффинностью к антигену. Гетерогенность популяции антител по аффинности и специфичности отражает гетерогенность клеток, секретирующих антитела. Каждая антителообразующая клетка вырабатывает гомогенную популяцию молекул. Часто отмечают, что с увеличением времени после иммунизации происходит повышение средней аффинности антител. Это «созревание иммунного ответа» отражает отбор клеток, образующих более аффинные антитела, и позволяет очень малому количеству антител более эффективно реагировать с антигеном и создавать защиту организма при повторном попадании в него микроорганизмов.

При изучении механизма взаимодействия антител с антигеном с помощью спектрополяриметрии и других физико-химических методов установлено, что в момент связывания антителом гаптена возникает конформационная перестройка молекулы антитела. При этом молекула антитела становится более устойчивой к действию различных денатурирующих агентов, а также и к гидролизу протеолитическими ферментами. Очевидно, в процессе связывания детерминантной группы антигена происходит адаптационная перестройка активного центра антитела.

Взаимодействие антитела с молекулой антигена сопровождается, в свою очередь, изменениями пространственной структуры антигена. Так, метмиоглобин превращается в апомиоглобин в результате комплексообразования с антителом, направленным к апомиоглобину, а лишенная активности β-галактозидаза — в активный фермент в результате реакции с антителами к активной форме β-галактозидазы. Таким образом, при взаимодействии антигена с антителом оба соединения оказывают взаимное влияние на собственную пространственную конформацию. Возникающие конформационные изменения имеют обратимый характер. Извлеченные из иммунных комплексов антитела сохраняют антигенсвязывающую активность и не отличаются по химическим и физическим свойствам от нативных антител.

Характер реакций, протекающих во второй фазе А. — а. р., определяется в значительной мере физическими свойствами антигена и проявляется в виде нескольких основных феноменов (агглютинации, нейтрализации токсинов и преципитации).

Феномен агглютинации заключается в том, что микроорганизмы, животные клетки или другие корпускулярные антигенные частицы, находящиеся во взвеси, под влиянием антител склеиваются между собой. Реакция агглютинации нашла широкое применение для определения групп крови человека, резус-фактора, количественного определения антител и антигенов. Реакция нейтрализации токсинов основана на свойствах антитоксинов (антител против токсинов), которые, соединяясь с соответствующими токсическими веществами, нейтрализуют их. Степень нейтрализации может быть учтена посредством введения восприимчивому животному смеси токсин — антитоксин. Количество антитоксина в иммунной сыворотке характеризуют тем количеством минимальных смертельных доз токсина, которое может быть нейтрализовано определенным количеством сыворотки. Реакцией нейтрализации пользуются для определения концентрации токсинов возбудителей дифтерии, столбняка и др. Для этого применяют стандартизированные антитоксические сыворотки.

Феномен преципитации заключается в образовании нерастворимых комплексов антиген — антитело в результате соединения растворимого антигена со специфическими антителами и выпадании этого комплекса в осадок. Особый случай реакции преципитации — реакция иммунной флоккуляции, которая происходит только в относительно узком диапазоне концентраций антигена, а при незначительном избытке антител и антигена образуются растворимые комплексы. Реакцию преципитации используют для количественного определения антигенов и антител, концентрации иммуноглобулинов различных классов в крови людей, в судебно-медицинской экспертизе для определения видовой принадлежности белков сыворотки крови в реакции Чистовича — Уленгута.

Способность антител соединять антигенные частицы в крупные конгломераты (агглютинация бактерийных и других клеток, преципитация растворенных антигенов) обусловливается наличием по крайней мере двух активных центров в молекуле антитела. Одна специфическая группа соединяется с одной антигенной детерминантой, другая — с аналогичной детерминантой другой антигенной частицы. Двухвалентность антител обеспечивает возможность соединения неограниченного числа антигенных частиц в конгломераты. При различном числе антигенных детерминант на молекуле антигена характер структуры конгломератов комплекса антиген — антитело может быть разным. При избытке антигена или антител крупные конгломераты вообще не возникают вследствие заполнения реагирующих участков молекул избыточным количеством второго компонента. Вследствие этого А. — а. р. максимально проявляются только в определенном диапазоне концентрации обоих реагентов, в так называемой зоне эквивалентности.

Взаимодействие антигена с антителом приводит к реализации ряда биологических (эффекторных) функций антител. К ним относятся феномены связывания комплемента, лизиса, антителозависимой цитотоксичности и опсонизации.

Феномен связывания комплемента — присоединение комплемента к комплексу антиген — антитело. Комплементом называют многокомпонентную самособирающуюся систему белков крови, которая играет одну из ключевых ролей в поддержании иммунного гомеостаза. Активация системы комплемента, индуцируемая в результате А. — а. р., сопровождается многочисленными нарушениями гомеостаза, связанными в первую очередь с повреждением клеток или изменением их функции. Только два класса антител (lgG и lgM) обеспечивают активацию системы комплемента. В зависимости от специфичности антител, типа клеток-мишеней, числа и природы участвующих в реакции компонентов комплемента могут наблюдаться необратимые повреждения клеточной мембраны, увеличиваться восприимчивость к фагоцитозу, высвобождаться фармакологические агенты типа гистамина, происходить направленные миграции клеток (хемотаксис). На способность комплемента присоединяться к комплексу антиген — антитело основана реакция связывания комплемента, которую применяют при диагностике сифилиса (реакция Вассермана), рада вирусных инфекций, изучении противотканевых антител и аутоантител. Феномен лизиса — способность некоторых антител в присутствии комплемента растворять клетки, против которых они возникли. Феномен антителозависимой клеточной цитотоксичности — контактный лизис клетками-киллерами (К-клетки) чужеродных клеток, покрытых lgG-антителами. Этот процесс не зависит от системы комплемента. Феномен опсонизации заключается в том, что антитела усиливают фагоцитарную активность нейтрофилов и макрофагов в отношении тех антигенов, против которых они получены. Библиогр.: Бойд У.Основы иммунологии, пер. с англ., М., 1969; Вейсман И.Л. Худ Л.Е. и Вуд У.Б. Введение в иммунологию, пер. с англ., с. 66, М., 1983; Иммунология, под ред. У. Пола, пер. с англ., т. 1, М., 1987; Кульберг А.Я. Молекулярная иммунология, с. 91, М., 1985; Кэбот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968; Петров Р.В. Иммунология, с. 36, М., 1987.

dic.academic.ru

Антиген — антитело реакция - Антигены

Антиген — антитело реакция — специфическое взаимодействие антител с соответствующими антигенами, в результате которого образуются комплексы антиген — антитело (иммунные комплексы). Часто конечным результатом этой реакции является связывание токсинов, обездвиживание вирулентных бактерий, нейтрализация вирусов. Антигенсвязывающие центры молекулы антитела могут связывать несколько неродственных антигенов. Такие антигены обладают структурным сходством и носят название перекрестно реагирующих. Гомогенная популяция молекул антител может связывать различные молекулы с очень малым структурным сходством или вовсе несхожие. В этом случае говорят о мультиспецифическом связывании, которое объясняют образованием связей в различных участках внутри антигенсвязывающих центров.

    Реакция антиген — антитело протекает в две фазы, которые различаются между собой по механизму и скорости. Первая фаза — специфическое соединение активного центра антитела с соответствующими группами антигена или гаптена (см. Антигены); вторая — неспецифическая фаза, следующая за первой, — визуально наблюдаемая реакция. При взаимодействии антител с простыми гаптенами вторая фаза, как правило, отсутствует. При некоторых условиях, например в отсутствие солей, первая фаза может осуществиться, а вторая — нет. Первая фаза протекает всегда быстро, а вторая иногда очень медленно.

    Соединение антигена с антителом обратимо; прочность соединения, называемая аффинитетом, может быть количественно измерена с помощью определения константы ассоциации. Существует также термин авидности антител, который употребляется для описания суммарной силы взаимодействия поливалентного антитела с полидетерминантным антигеном.

    В большинстве случаев популяции антител, появляющиеся в сыворотке иммунизированных животных, представляют собой гетерогенный набор молекул с разными антигенсвязывающими центрами и с различной аффинностью к антигену. Гетерогенность популяции антител по аффинности и специфичности отражает гетерогенность клеток, секретирующих антитела. Каждая антителообразующая клетка вырабатывает гомогенную популяцию молекул. Часто отмечают, что с увеличением времени после иммунизации происходит повышение средней аффинности антител. Это «созревание иммунного ответа» отражает отбор клеток, образующих более аффинные антитела, и позволяет очень малому количеству антител более эффективно реагировать с антигеном и создавать защиту организма при повторном попадании в него микроорганизмов.

    При изучении механизма взаимодействия антител с антигеном с помощью спектрополяриметрии и других физико-химических методов установлено, что в момент связывания антителом гаптена возникает конформационная перестройка молекулы антитела. При этом молекула антитела становится более устойчивой к действию различных денатурирующих агентов, а также и к гидролизу протеолитическими ферментами. Очевидно, в процессе связывания детерминантной группы антигена происходит адаптационная перестройка активного центра антитела.

    Взаимодействие антитела с молекулой антигена сопровождается, в свою очередь, изменениями пространственной структуры антигена. Так, метмиоглобин превращается в апомиоглобин в результате комплексообразования с антителом, направленным к апомиоглобину, а лишенная активности b-галактозидаза — в активный фермент в результате реакции с антителами к активной форме b-галактозидазы. Таким образом, при взаимодействии антигена с антителом оба соединения оказывают взаимное влияние на собственную пространственную конформацию. Возникающие конформационные изменения имеют обратимый характер.

Извлеченные из иммунных комплексов антитела сохраняют антигенсвязывающую активность и не отличаются по химическим и физическим свойствам от нативных антител.

    Характер реакций, протекающих во второй фазе А. — а. р., определяется в значительной мере физическими свойствами антигена и проявляется в виде нескольких основных феноменов (агглютинации, нейтрализации токсинов и преципитации).

    Феномен агглютинации заключается в том, что микроорганизмы, животные клетки или другие корпускулярные антигенные частицы, находящиеся во взвеси, под влиянием антител склеиваются между собой. Реакция агглютинации нашла широкое применение для определения групп крови человека, резус-фактора, количественного определения антител и антигенов.

    Реакция нейтрализации токсинов основана на свойствах антитоксинов (антител против токсинов), которые, соединяясь с соответствующими токсическими веществами, нейтрализуют их. Степень нейтрализации может быть учтена посредством введения восприимчивому животному смеси токсин — антитоксин. Количество антитоксина в иммунной сыворотке характеризуют тем количеством минимальных смертельных доз токсина, которое может быть нейтрализовано определенным количеством сыворотки. Реакцией нейтрализации пользуются для определения концентрации токсинов возбудителей дифтерии, столбняка и др. Для этого применяют стандартизированные антитоксические сыворотки.

    Феномен преципитации заключается в образовании нерастворимых комплексов антиген — антитело в результате соединения растворимого антигена со специфическими антителами и выпадании этого комплекса в осадок. Особый случай реакции преципитации — реакция иммунной флоккуляции, которая происходит только в относительно узком диапазоне концентраций антигена, а при незначительном избытке антител и антигена образуются растворимые комплексы.

Реакцию преципитации используют для количественного определения антигенов и антител, концентрации иммуноглобулинов различных классов в крови людей, в судебно-медицинской экспертизе для определения видовой принадлежности белков сыворотки крови в реакции Чистовича — Уленгута.

    Способность антител соединять антигенные частицы в крупные конгломераты (агглютинация бактерийных и других клеток, преципитация растворенных антигенов) обусловливается наличием по крайней мере двух активных центров в молекуле антитела. Одна специфическая группа соединяется с одной антигенной детерминантой, другая — с аналогичной детерминантой другой антигенной частицы. Двухвалентность антител обеспечивает возможность соединения неограниченного числа антигенных частиц в конгломераты. При различном числе антигенных детерминант на молекуле антигена характер структуры конгломератов комплекса антиген — антитело может быть разным. При избытке антигена или антител крупные конгломераты вообще не возникают вследствие заполнения реагирующих участков молекул избыточным количеством второго компонента. Вследствие этого А. — а. р. максимально проявляются только в определенном диапазоне концентрации обоих реагентов, в так называемой зоне эквивалентности.

    Взаимодействие антигена с антителом приводит к реализации ряда биологических (эффекторных) функций антител. К ним относятся феномены связывания комплемента, лизиса, антителозависимой цитотоксичности и опсонизации.

    Феномен связывания комплемента — присоединение комплемента к комплексу антиген — антитело. Комплементом называют многокомпонентную самособирающуюся систему белков крови, которая играет одну из ключевых ролей в поддержании иммунного гомеостаза. Активация системы комплемента, индуцируемая в результате А. — а. р., сопровождается многочисленными нарушениями гомеостаза,

связанными в первую очередь с повреждением клеток или изменением их функции. Только два класса антител (lgG и lgM) обеспечивают активацию системы комплемента. В зависимости от специфичности антител, типа клеток-мишеней, числа и природы участвующих в реакции компонентов комплемента могут наблюдаться необратимые повреждения клеточной мембраны, увеличиваться восприимчивость к фагоцитозу, высвобождаться фармакологические агенты типа гистамина, происходить направленные миграции клеток (хемотаксис). На способность комплемента присоединяться к комплексу антиген — антитело основана реакция связывания комплемента, которую применяют при диагностике сифилиса (реакция Вассермана), рада вирусных инфекций, изучении противотканевых антител и аутоантител.

    Феномен лизиса — способность некоторых антител в присутствии комплемента растворять клетки, против которых они возникли. Феномен антителозависимой клеточной цитотоксичности — контактный лизис клетками-киллерами (К-клетки) чужеродных клеток, покрытых lgG-антителами. Этот процесс не зависит от системы комплемента. Феномен опсонизации заключается в том, что антитела усиливают фагоцитарную активность нейтрофилов и макрофагов в отношении тех антигенов, против которых они получены.

    См. также Иммунологические методы исследования.

 

    Библиогр.: Бойд У.Основы иммунологии, пер. с англ., М., 1969; Вейсман И.Л. Худ Л.Е. и Вуд У.Б. Введение в иммунологию, пер. с англ., с. 66, М., 1983; Иммунология, под ред. У. Пола, пер. с англ., т. 1, М., 1987; Кульберг А.Я. Молекулярная иммунология, с. 91, М., 1985; Кэбот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968; Петров Р.В. Иммунология, с. 36, М., 1987.

 

 

 

www.nedug.ru

Понятия антиген и антитело: виды, функции

Несомненно, вам приходилось слышать о понятиях антиген и антитело. Но, если вы не антиген и антителоимеете отношения к медицине или биологии, то, вероятнее всего не знаете о роли антигенов и антител. У большинства людей есть общее представление о том, что делают антитела, но они не осознают их решающую связь с антигенами. В этой статье мы рассмотрим разницу между этими двумя образованиями, узнаем о том, какие их функции в организме.

Какие различия имеют антиген и антитело?

Самый простой способ получить лучшее представление о различии между антигеном и антителом — это провести сравнение этих двух образований. Они имеют разные структуры, функции и местоположения в теле. Одни, как правило, обладают положительными качествами, поскольку  защищают организм, а другие могут вызывать негативную реакцию.

Что это такое?

Антиген — чужеродная частица, которая может вызывать иммунный ответ в теле человека. Они  в основном состоят из белков, но они также могут быть нуклеиновыми кислотами, углеводами или липидами. Антигены также известны под термином иммуногены. К ним относятся  химические соединения, пыльцу растений, вирусы, бактерии и другие вещества биологического происхождения.

Антитела могут называться иммуноглобулинами. Это белки, синтезируемые организмом. Их продукция необходима для борьбы с антигенами.

 Какие типы и функции имеют антиген и антитело?

Все антигены делятся на внешние и внутренние. Внутри организма образуются ауто-антигены, такие как раковые клетки. Внешние антигены попадают в организм из внешней среды. Они стимулируют иммунную систему производить больше антител, защищающих организм от различных повреждений.

Существует всего 5 различных типов антител. Это IgA, IgE, IgG, IgM и IgD.

IgA защищают поверхность тела от воздействия внешних веществ.

IgE вызывает защитную реакцию в организме против посторонних веществ, в том числе животного происхождения, пыльцы растений и спор грибов. Эти антитела являются частью аллергических реакций на некоторые яды и лекарства. Те, у кого аллергия, как правило, имеют большое количество антител этого типа.

IgG играет ключевую роль в борьбе с инфекциями бактериальной или вирусной природы. Это единственные антитела, которые способны проникать через плаценту беременной женщины, оказывая защиту плоду, находящемуся еще в утробе матери.

Когда развивается инфекция, антитела IgM представляют собой самый первый тип антител, которые синтезируются в организме в качестве иммунного ответа. Они приведут к другим клеткам иммунной системы, разрушающим посторонние вещества.

Ученым до сих пор не ясно, что именно делают антитела IgD.

Где их можно найти антиген и антитело?

Другое различие между антигеном и антителом заключается в том, где они. Антигены являются своеобразными «крючками» на поверхности клеток и встречаются почти в каждой клетке.

Вы можете найти IgA-антитела во влагалище, глазах, ушах, пищеварительном тракте, дыхательных проходах и носу, а также в крови, слезах и слюне. Приблизительно 10-15% антител в организме составляют IgA. Есть небольшое количество людей, которые не синтезируют IgA-антитела.

IgD-антитела можно обнаружить в небольших количествах в жировой ткани грудной клетки или живота.

Вы найдете IgE-антитела в слизистых оболочках, коже и легких.

IgG антитела находятся во всех жидкостях организма. Они являются наиболее распространенными и самыми малыми по размеру антителами в организме.

IgM-антитела являются самыми большими антителами и могут быть обнаружены в лимфатической жидкости и крови. Они составляют 5-10% антител в организме.

Как действуют антигены и антитела: иммунный ответ

Чтобы лучше понять разницу между антигеном и антителом, он помогает понять иммунный ответ. Все здоровые взрослые имеют тысячи различных антител в небольших количествах по всему телу. Каждое антитело является очень специализированным, признавая единственный тип постороннего вещества. Большинство молекул антител имеют форму Y, имеющую связующее место вдоль каждой руки. Каждый сайт связывания имеет определенную форму, и в него будут входить только антигены с одинаковой формой. Антитела предназначены для связывания с антигенами. При связывании они делают антигены неактивными, позволяя другим процессам в организме захватывать посторонние вещества, удаляя и уничтожая их.

В первый раз, когда инородное вещество попадает в организм, вы можете испытывать симптомы болезни. Это происходит, когда иммунная система создает антитела, которые будут бороться с чужеродным веществом. В будущем, когда тот же антиген повторно атакует организм, стимулируется иммунная память. Это приводит к немедленному производству большого количества антител, которые были созданы при первой атаке. Быстрый ответ на дальнейшие атаки означает, что вы уже можете не испытывать каких-либо симптомов болезни или даже знать, что подверглись воздействию антигена. Вот почему большинство людей повторно не болеют такими болезнями, как ветряная оспа.

Из вышеупомянутой разницы между антигеном и антителом анализ на антитела может предоставить врачу полезную информацию в процессе диагностики.

Ваш врач может проверить вашу кровь на антитела по целому ряду причин, включая:

  • диагностика аллергий или аутоиммунных заболеваний
  • определение текущей инфекции или одной из инфекций в прошлом
  • диагностика рецидивирующих инфекций, причины рецидивов из-за низкого уровня IgG-антител или других иммуноглобулинов
  • проверка реакции иммунизации как способа убедиться, что вы по-прежнему невосприимчивы к определенному заболеванию
  • диагностика эффективности лечения различных видов рака, особенно тех, которые влияют на костный мозг человека
  • диагностика конкретных видов рака, включая макроглобулинемию или множественные миеломы.

Прочитайте еще:

lekar-n.com

Антиге́н — антите́ло реа́кция

специфическое взаимодействие антител с соответствующими антигенами, в результате которого образуются комплексы антиген — антитело (иммунные комплексы). Часто конечным результатом этой реакции является связывание токсинов, обездвиживание вирулентных бактерий, нейтрализация вирусов. Антигенсвязывающие центры молекулы антитела могут связывать несколько неродственных антигенов. Такие антигены обладают структурным сходством и носят название перекрестно реагирующих. Гомогенная популяция молекул антител может связывать различные молекулы с очень малым структурным сходством или вовсе несхожие. В этом случае говорят о мультиспецифическом связывании, которое объясняют образованием связей в различных участках внутри антигенсвязывающих центров.

Реакция антиген — антитело протекает в две фазы, которые различаются между собой по механизму и скорости. Первая фаза — специфическое соединение активного центра антитела с соответствующими группами антигена или гаптена (см. Антигены); вторая — неспецифическая фаза, следующая за первой, — визуально наблюдаемая реакция. При взаимодействии антител с простыми гаптенами вторая фаза, как правило, отсутствует. При некоторых условиях, например в отсутствие солей, первая фаза может осуществиться, а вторая — нет. Первая фаза протекает всегда быстро, а вторая иногда очень медленно.

Соединение антигена с антителом обратимо; прочность соединения, называемая аффинитетом, может быть количественно измерена с помощью определения константы ассоциации. Существует также термин авидности антител, который употребляется для описания суммарной силы взаимодействия поливалентного антитела с полидетерминантным антигеном.

В большинстве случаев популяции антител, появляющиеся в сыворотке иммунизированных животных, представляют собой гетерогенный набор молекул с разными антигенсвязывающими центрами и с различной аффинностью к антигену. Гетерогенность популяции антител по аффинности и специфичности отражает гетерогенность клеток, секретирующих антитела. Каждая антителообразующая клетка вырабатывает гомогенную популяцию молекул. Часто отмечают, что с увеличением времени после иммунизации происходит повышение средней аффинности антител. Это «созревание иммунного ответа» отражает отбор клеток, образующих более аффинные антитела, и позволяет очень малому количеству антител более эффективно реагировать с антигеном и создавать защиту организма при повторном попадании в него микроорганизмов.

При изучении механизма взаимодействия антител с антигеном с помощью спектрополяриметрии и других физико-химических методов установлено, что в момент связывания антителом гаптена возникает конформационная перестройка молекулы антитела. При этом молекула антитела становится более устойчивой к действию различных денатурирующих агентов, а также и к гидролизу протеолитическими ферментами. Очевидно, в процессе связывания детерминантной группы антигена происходит адаптационная перестройка активного центра антитела.

Взаимодействие антитела с молекулой антигена сопровождается, в свою очередь, изменениями пространственной структуры антигена. Так, метмиоглобин превращается в апомиоглобин в результате комплексообразования с антителом, направленным к апомиоглобину, а лишенная активности β-галактозидаза — в активный фермент в результате реакции с антителами к активной форме β-галактозидазы. Таким образом, при взаимодействии антигена с антителом оба соединения оказывают взаимное влияние на собственную пространственную конформацию. Возникающие конформационные изменения имеют обратимый характер. Извлеченные из иммунных комплексов антитела сохраняют антигенсвязывающую активность и не отличаются по химическим и физическим свойствам от нативных антител.

Характер реакций, протекающих во второй фазе А. — а. р., определяется в значительной мере физическими свойствами антигена и проявляется в виде нескольких основных феноменов (агглютинации, нейтрализации токсинов и преципитации).

Феномен агглютинации заключается в том, что микроорганизмы, животные клетки или другие корпускулярные антигенные частицы, находящиеся во взвеси, под влиянием антител склеиваются между собой. Реакция агглютинации нашла широкое применение для определения групп крови человека, резус-фактора, количественного определения антител и антигенов.

Реакция нейтрализации токсинов основана на свойствах антитоксинов (антител против токсинов), которые, соединяясь с соответствующими токсическими веществами, нейтрализуют их. Степень нейтрализации может быть учтена посредством введения восприимчивому животному смеси токсин — антитоксин. Количество антитоксина в иммунной сыворотке характеризуют тем количеством минимальных смертельных доз токсина, которое может быть нейтрализовано определенным количеством сыворотки. Реакцией нейтрализации пользуются для определения концентрации токсинов возбудителей дифтерии, столбняка и др. Для этого применяют стандартизированные антитоксические сыворотки.

Феномен преципитации заключается в образовании нерастворимых комплексов антиген — антитело в результате соединения растворимого антигена со специфическими антителами и выпадании этого комплекса в осадок. Особый случай реакции преципитации — реакция иммунной флоккуляции, которая происходит только в относительно узком диапазоне концентраций антигена, а при незначительном избытке антител и антигена образуются растворимые комплексы. Реакцию преципитации используют для количественного определения антигенов и антител, концентрации иммуноглобулинов различных классов в крови людей, в судебно-медицинской экспертизе для определения видовой принадлежности белков сыворотки крови в реакции Чистовича — Уленгута.

Способность антител соединять антигенные частицы в крупные конгломераты (агглютинация бактерийных и других клеток, преципитация растворенных антигенов) обусловливается наличием по крайней мере двух активных центров в молекуле антитела. Одна специфическая группа соединяется с одной антигенной детерминантой, другая — с аналогичной детерминантой другой антигенной частицы. Двухвалентность антител обеспечивает возможность соединения неограниченного числа антигенных частиц в конгломераты. При различном числе антигенных детерминант на молекуле антигена характер структуры конгломератов комплекса антиген — антитело может быть разным. При избытке антигена или антител крупные конгломераты вообще не возникают вследствие заполнения реагирующих участков молекул избыточным количеством второго компонента. Вследствие этого А. — а. р. максимально проявляются только в определенном диапазоне концентрации обоих реагентов, в так называемой зоне эквивалентности.

Взаимодействие антигена с антителом приводит к реализации ряда биологических (эффекторных) функций антител. К ним относятся феномены связывания комплемента, лизиса, антителозависимой цитотоксичности и опсонизации.

Феномен связывания комплемента — присоединение комплемента к комплексу антиген — антитело. Комплементом называют многокомпонентную самособирающуюся систему белков крови, которая играет одну из ключевых ролей в поддержании иммунного гомеостаза. Активация системы комплемента, индуцируемая в результате А. — а. р., сопровождается многочисленными нарушениями гомеостаза, связанными в первую очередь с повреждением клеток или изменением их функции. Только два класса антител (lgG и lgM) обеспечивают активацию системы комплемента. В зависимости от специфичности антител, типа клеток-мишеней, числа и природы участвующих в реакции компонентов комплемента могут наблюдаться необратимые повреждения клеточной мембраны, увеличиваться восприимчивость к фагоцитозу, высвобождаться фармакологические агенты типа гистамина, происходить направленные миграции клеток (хемотаксис). На способность комплемента присоединяться к комплексу антиген — антитело основана реакция связывания комплемента, которую применяют при диагностике сифилиса (реакция Вассермана), рада вирусных инфекций, изучении противотканевых антител и аутоантител.

Феномен лизиса — способность некоторых антител в присутствии комплемента растворять клетки, против которых они возникли. Феномен антителозависимой клеточной цитотоксичности — контактный лизис клетками-киллерами (К-клетки) чужеродных клеток, покрытых lgG-антителами. Этот процесс не зависит от системы комплемента. Феномен опсонизации заключается в том, что антитела усиливают фагоцитарную активность нейтрофилов и макрофагов в отношении тех антигенов, против которых они получены.

См. также Иммунологические методы исследования.

Библиогр.: Бойд У.Основы иммунологии, пер. с англ., М., 1969; Вейсман И.Л. Худ Л.Е. и Вуд У.Б. Введение в иммунологию, пер. с англ., с. 66, М., 1983; Иммунология, под ред. У. Пола, пер. с англ., т. 1, М., 1987; Кульберг А.Я. Молекулярная иммунология, с. 91, М., 1985; Кэбот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968; Петров Р.В. Иммунология, с. 36, М., 1987.

slovar.wikireading.ru


Смотрите также