Иммунная система. Антитела образуют клетки иммунной системы


Типы иммунитета. Иммунный ответ

Основная функция иммунной системы это поддержание антигенного гомеостаза (постоянства) организма. Состояние невосприимчивости к определенному типу микроорганизмов их токсинам или ядам животных называется иммунитетом. При участии иммунной системы распознаются и разрушаются все генетически чужеродные структуры: вирусы, бактерии, грибы, паразиты, опухолевые клетки. Реакция организма человека на внедрение инфекции или яда носит название иммунного ответа. В процессе эволюции свойства микроорганизмов постоянно совершенствовались (этот процесс происходит и сейчас) – это привело к появлению различных видов иммунитета.

Кроме иммунной системы в защите организма принимают участие другие структуры и факторы, которые препятствуют проникновению микробов. Такими структурами являются, например, кожа (здоровая кожа практически непроницаема для большинства микробов и вирусов), движение ресничек эпителия дыхательных путей, слой слизи, покрывающий слизистые оболочки, кислая среда желудка и пр.

Типы иммунитета Различаем два основных типа иммунитета: видовой (наследственный) и индивидуальный (приобретенный). Видовой иммунитет одинаков у всех представителей определенного вида животных. Видовой иммунитет человека делает его невосприимчивым по отношению ко многим заболеваниям животных (например, чуме собак), с другой стороны многие животные невосприимчивы к болезням людей. Основу видового иммунитета, видимо, составляет различие микроструктуры. Видовой иммунитет передается по наследству от одного поколения к другому.

Индивидуальный иммунитет формируется на протяжении жизни каждого человека и не передается последующим поколениям. Формирование индивидуального иммунитета происходит, как правило, во время различных инфекционных заболеваний (или отравлений), однако не все болезни оставляют после себя стабильный иммунитет. Так например, после перенесенной гонорей иммунитет очень непродолжителен и слаб, поэтому это заболевание может возникнуть вновь спустя некоторое время после очередного контакта с микробом. Другие заболевания, как, например, ветряная оспа, оставляют стабильный иммунитет, который предотвращает повторное заболевание на протяжении всей жизни. Длительность иммунитета определяется главным образом иммуногенностью микроба (способность вызывать иммунный ответ).

Иммунитет, приобретенный после перенесенного инфекционного заболевания, называется натуральным активным, а после вакцинации – искусственным активным. Эти два типа иммунитета наиболее продолжительны. Во время беременности мать передает плоду часть своих антител, которые защищают ребенка в первые месяцы жизни. Такой иммунитет называется натуральным пассивным. Искусственный пассивный иммунитет развивается при введении человеку сыворотки содержащей антитела против определенного микроба или его яда. Такой иммунитет длится несколько недель, а затем бесследно исчезает.

Стерильный и нестерильный иммунитет Как уже упоминалось выше, состояние иммунитета (то есть невосприимчивости к определенному типу антигена) возникает после перенесенной инфекции. В результате иммунного ответа большая часть микроорганизмов, поникнувших в организм, разрушается. Однако полное выведение микробов из организма происходит не всегда. При некоторых инфекционных заболеваниях (например, при туберкулезе), часть микробов остаются блокированными в организме. При этом микробы теряют агрессивность и способность активно размножаться. В таких случаях возникает, так называемый нестерильный иммунитет, который поддерживается постоянным присутствием в организме небольшого количества микробов. При нестерильном иммунитете существует возможность реактивации инфекции (так происходит в случае герпеса), на фоне временного снижения функции иммунной системы. Однако в случае реактивации болезнь быстро локализуется и подавляется, так как организм уже приспособился бороться с ней.

Стерильный иммунитет характеризуется полным устранением микробов из организма (например, при вирусном гепатите А). Стерильный иммунитет возникает также при вакцинации.

Виды иммунного ответа Как уже говорилось выше, иммунный ответ представляет собой реакцию организма на внедрение в него микробов или различных ядов. В целом, любое вещество, чья структура отличается от структуры тканей человека способно вызвать иммунный ответ. Исходя из механизмов, задействованных в его реализации, иммунный ответ может быть различным.

Во-первых, различаем специфический и неспецифический иммунный ответ. Неспецифический иммунный ответ - это первый этап борьбы с инфекцией он запускается сразу же после попадания микроба в наш организм. В его реализации задействованы система комплимента, лизоцим, тканевые макрофаги. Неспецифический иммунный ответ практически одинаков для всех типов микробов и подразумевает первичное разрушение микроба и формирование очага воспаления. Воспалительная реакция это универсальный защитный процесс, который направлен на предотвращение распространения микроба. Неспецифический иммунитет определяет общую сопротивляемость организма. Люди с ослабленным иммунитетом чаще болеют различными заболеваниями.

Специфический иммунитет это вторая фаза защитной реакции организма. Основной характеристикой специфического иммунного ответа является распознавание микроба и выработка факторов защиты направленных специально против него. Процессы неспецифического и специфического иммунного ответа пересекаются и во многом дополняют друг друга. Во время неспецифического иммунного ответа часть микробов разрушается, а их части выставляются на поверхности клеток (например, макрофагов). Во второй фазе иммунного ответа клетки иммунной системы (лимфоциты) распознают части микробов, выставленные на мембране других клеток, и запускают специфический иммунный ответ как таковой. Специфический иммунный ответ может быть двух типов: клеточный и гуморальный.

Клеточный иммунный ответ подразумевает формирование клона лимфоцитов (К-лимфоциты, цитотоксические лимфоциты), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

Клеточный иммунитет задействован в ликвидации вирусной инфекции, а также таких типов бактериальных инфекций как туберкулез, проказа, риносклерома. Раковые клетки тоже разрушаются активированными лимфоцитами.

Гуморальный иммунный ответ опосредован В-лимфоцитами, которые после распознания микроба начинают активно синтезировать антитела по принципу один тип антигена – один тип антитела. На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген. Антитела (иммуноглобулины, Ig) – это молекулы белков, способные прилипать к определенной структуре микроорганизма, вызывая его разрушение или скорейшее выведение из организма. Теоретически возможно формирование антител против любого химического вещества, имеющего достаточно большую молекулярную массу. Существует несколько типов иммуноглобулинов, каждый из которых выполняет специфическую функцию. Иммуноглобулины типа А (IgA) синтезируются клетками иммунной системы и выводятся на поверхность кожи и слизистых оболочек. В больших количествах IgA содержатся во всех физиологических жидкостях (слюна, молоко, моча). Иммуноглобулины типа А обеспечивают местный иммунитет, препятствуя проникновению микробов через покровы тела и слизистые оболочки.

Иммуноглобулины типа M (IgM) выделяются в первое время после контакта с инфекцией. Эти антитела представляют собой большие комплексы способные связывать сразу несколько микробов одновременно. Определение IgM в крови является признаком развития в организме острого инфекционного процесса.

Антитела типа G (IgG) появляются вслед за IgM и представляют собой основной фактор гуморального иммунитета. Этот тип антител защищает организм на протяжении длительного времени от различных микроорганизмов.

Иммуноглобулины типа Е (IgE) участвуют в развитии аллергических реакций немедленного типа, тем самым защищая организм от проникновения микробов и ядов через кожу.

Антитела вырабатываются во время всех инфекционных болезней. Период развития гуморального иммунного ответа составляет примерно 2 недели. За это время в организме вырабатывается достаточное количество антител для нейтрализации инфекции.

Клоны цитотоксических лимфоцитов и В-лимфоцитов сохраняются в организме длительное время и при новом контакте с микроорганизмом запускают мощный иммунный ответ. Присутствие в организме активированных иммунных клеток и антител против определенных типов антигенов носит название сенсибилизация. Сенсибилизированный организм способен быстро ограничивать распространение инфекции, предупреждая развитие болезни.

Сила иммунного ответа Сила иммунного ответа зависит от реактивности организма, то есть от его способности реагировать на внедрение инфекции или ядов. Различаем несколько типов иммунного ответа в зависимости от его силы: нормоэргический, гипоэргический и гиперэргический (от греч. ergos – сила).

Нормоэргический ответ – соответствует силе агрессии со стороны микроорганизмов и приводит к их полному устранению. При нормоэргическом иммунном ответе повреждение тканей в ходе воспалительной реакции умеренно и не вызывает серьезных последствий для организма. Нормоэргический иммунный ответ характерен для людей с нормальной функцией иммунной системы.

Гипоэргический ответ – слабее агрессии со стороны микроорганизмов. Поэтому при таком типе ответа распространение инфекции ограничивается не полностью, а само инфекционное заболевание переходит в хроническую форму. Гипоэргический иммунный ответ характерен для детей и пожилых людей (у этой категории людей иммунная система работает недостаточно в силу возрастных особенностей), а также у лиц с первичными и вторичными иммунодефицитами.

Гиперэргический иммунный ответ развивается на фоне сенсибилизации организма по отношению к какому-либо антигену. Сила гиперэргического иммунного ответа во многом превышает силу агрессии микробов. В ходе гиперэргического иммунного ответа воспалительная реакция достигает значительных значений, что приводит к повреждению здоровых тканей организма. Возникновение гиперэргического иммунного ответа определяется особенностями микроорганизмов и конституциональными характеристиками самой иммунной системы организма. Гиперэргические иммунные реакции лежат в основе формирования аллергии.

Библиография:

  • Лесков,В.П. Клиническая иммунология для врачей , М., 1997
  • Борисов Л.Б. Медицинская Микробиология, вирусология, иммунология, М. : Медицина, 1994
  • Земсков А.М. Клиническая иммунология и аллергология, М., 1997

www.tiensmed.ru

Иммунная система

Имму́нная систе́ма — подсистема, существующая у большинства животных и объединяющая органы и ткани, в которых происходит образование и взаимодействие клеток, обеспечивающих защиту организма от чужеродных субстанций, поступающих извне или образующихся в самом организме, путём их распознавания и вовлечения в специфические реакции. Иммунная система является материальной основой явления иммунитета.

Предназначение

Конечной целью иммунной системы является уничтожение (элиминация) чужеродного агента, которым может оказаться болезнетворный микроорганизм, инородное тело, ядовитое вещество или переродившаяся клетка самого организма. Этим достигается так называемая биологическая индивидуальность организма. Специфические молекулы, производимые чужеродными агентами, называются антигенами. В иммунной системе развитых организмов существует множество способов обнаружения и удаления антигенов и их производителей. Этот процесс называется иммунным ответом. Стоит отметить, что после элиминации антигена иммунный ответ прекращается. Все формы иммунного ответа можно разделить на приобретённые и врождённые реакции. Основное различие между ними в том, что приобретённый иммунитет высокоспецифичен по отношению к конкретному типу антигенов. Например, у перенёсших ветрянку (корь, дифтерию) людей часто возникает пожизненный иммунитет к этим заболеваниям.

Что представляет из себя иммунная система

ИС представляет из себя комплекс органов и клеток, способных выполнять иммунологические функции. Прежде всего иммунный ответ осуществляют лейкоциты. Бо́льшая часть клеток ИС происходит из кроветворных тканей. У людей и животных развитие этих клеток происходит в костном мозгу. Лишь T-лимфоциты нуждаются в особых условиях развития внутри тимуса (вилочковой железы). Зрелые клетки расселяются в лимфоидных органах и на границе с окружающей средой, около кожи или на слизистых оболочках. Организм производит многие тысячи разновидностей иммунных клеток, каждая из которых отвечает за элиминацию какого-то определённого типа антигенов. Наличие большого количества разновидностей иммунных клеток необходимо для того, чтобы отражать атаки микроорганизмов, способных мутировать и изменять свой антигенный состав. Значительная часть этих клеток завершает свой жизненный цикл, так и не приняв участие в защите организма. Например, не встретив подходящих антигенов.

Клетки крови, отвечающие за иммунитет

Лимфоциты

Лимфоциты — одни из основных клеток иммунной системы из группы лейкоцитов. Они отвечают за приобретённый иммунитет, так как могут распознавать возбудителей инфекции внутри или вне клеток, в тканях или в крови. Во время развития лимфоцитов на их поверхности появляются рецепторы для антигенов - чужеродных молекул. Рецепторы представляют из себя как бы «отпечаток» чужеродной молекулы. При этом одна клетка может содержать рецепторы только для одного вида антигенов. На этапе развития лимфоциты проходят отбор: остаются только значимые с точки зрения защиты организма, а также те, которые не несут угрозы собственным тканям организма. Параллельно с этим процессом лимфоциты разделяются на группы, способные выполнять ту или иную функцию защиты. Существуют разные виды лимфоцитов, например: B-лимфоциты, T-лимфоциты и большой гранулярный лимфоцит (БГЛ). B-лимфоциты противодействуют внеклеточным возбудителям, образуя специфические молекулы — антитела, которые способны связывать антигены. У T-лимоцитов множество задач. Одна из них — это регуляция с помощью специальных белков (цитокинов) активации B-лимфоцитов для образования антител; а также регуляция активации фагоцитов для более эффективного разрушения микроорганизмов. Эту задачу выполняет группа T-хэлперов. Ещё одна задача T-клеток - это разрушение инфицированных вирусами клеток организма. За это отвечают T-киллеры.

Фагоциты

Фагоциты — это группа лейкоцитов. К фагоцитам относятся такие клетки, как мононуклеарные фагоциты (в частности - моноциты и макрофаги), нейтрофилы и эозинофилы. Фагоциты способны связывать микроорганизмы и антигены на своей поверхности, а затем поглощать и уничтожать их. Эта функция основана на простых механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врождённого иммунитета. Фагоциты образуют первую линию защиты против инфекции. Ещё одна из задач фагоцитов — презентация антигенов T-лимфоцитам. Для эффективного уничтожения микробов фагоцитам требуется активация. Эозинофилы — это специализированная группа фагоцитов, они способны уничтожать больших внеклеточных паразитов.

Вспомогательные клетки

Вспомогательными клетками считаются дендритные и тучные клетки, базофилы, тромбоциты. Также в иммунной защите участвуют клетки различных тканей организма.

Комплемент

Система комплемента — это одна из основных систем врождённого иммунитета. Функция этой системы состоит в том, чтобы отличать «своё» от «не своего». Это достигается благодаря присутствию на клетках организма регуляторных молекул, которые подавляют активацию комплемента. Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

Опсонизация

Лизис клеток-мишеней

Регулирование комплемента

Три этапа приобретённой иммунной защиты

Распознавание антигенов

Все иммунные клетки способны в какой-то мере распознавать антигены и враждебные микроорганизмы. Но специфический механизм распознавания — это всецело функция лимфоцитов. Как было отмечено выше, организм производит многие тысячи разновидностей иммунных клеток с разными рецепторами. Таким образом удаётся распознавать не только известные антигены, но также и те, которые образуются в результате мутаций микроорганизмов. Каждая B-клетка синтезирует поверхностный рецептор, который может распознавать определённый антиген. Основой этого рецептора является молекула иммуноглобулина (Ig). T-клетки не распознают антиген как таковой. Их рецепторы распознают лишь изменённые молекулы организма — фрагменты антигена, встроенные в молекулы главного комплекса гистосовместимости (МНС). Большие гранулярные лимфоциты (БГЛ), как и T-клетки, способны распознавать изменения клеточной поверхности при злокачественных мутациях или вирусной инфекции. Так же эффективно они распознают клетки, поверхность которых лишена или утратила значительную часть МНС.

Иммунный ответ

На начальном этапе иммунный ответ происходит при участии механизмов врождённого иммунитета, но позднее лимфоциты начинают осуществлять специфический (приобретённый) ответ. Для включения реакции иммунитета недостаточно простой связи антигена или повреждённой МНС с рецепторами клеток ИС. Для этого требуется довольно сложная цепь межклеточного взаимодействия. На начальном этапе главными участниками этого взаимодействия являются антигенпредставляющие клетки (АПК). В качестве АПК выступают дендритные клетки, макрофаги, B-лимфоциты и некоторые другие клетки. Суть процессов, происходящих в АПК, заключается в том, чтобы переработать антиген и встроить его фрагменты в МНС, то есть представить в понятном для T-хэлперов виде. АПК активируют только определённую группу T-хэлперов, способную противостоять определённому виду антигенов. После активации T-хэлперы начинают активно делиться, а затем выделять цитокины, с помощью которых активизируются фагоциты и другие лейкоциты, в том числе T-киллеры. Дополнительная активация некоторых клеток ИС происходит при контакте их с T-хэлперами. При активации B-клетки размножаются и превращаются в плазматические клетки, которые начинают синтезировать множество молекул, похожих на рецепторы. Такие молекулы называются антителами. Эти молекулы взаимодействуют с антигеном, который активировал B-клетки. В результате этого, чужеродные тела нейтрализуются, становятся более уязвимыми для фагоцитов и т. п. Активация T-клеток превращает их в цитотоксические лимфоциты, которые убивают чужеродные и поражённые клетки. Таким образом, в результате иммунного ответа малочисленные группы неактивных лейкоцитов активируются, размножаются и превращаются в эффекторные клетки, которые способны с помощью тех или иных механизмов бороться с антигенами и причинами их появления. В процессе иммунного ответа включаются супрессорные механизмы, регулирующие иммунные процессы в организме.

Воспалительная реакция

За воспалительный процесс отвечают вспомогательные клетки ИС. Основная цель этого процесса — привлечение лейкоцитов к очагу инфекции. За воспалительный процесс отвечают базофилы, тучные клетки и тромбоциты. Процесс происходит под воздействием специальных веществ - медиаторов воспаления. Выделение медиаторов происходит при активации базофилов и тучных клеток. Эти клетки также могут выделять ряд медиаторов, регулирующих иммунный ответ. Тучные клетки располагаются вблизи кровеносных сосудов. Базофилы, наоборот, циркулируют в крови. Тромбоциты активируются в процессе свёртывания крови.

Нейтрализация

Клетки, отвечающие за иммунную защиту, могут вырабатывать антитела к различным антигенам. Нейтрализация — это один из самых простых способов иммунного ответа. В данном случае, молекулы антител просто связываются с микроорганизмами и нейтрализуют их. Например, антитела к наружным белкам (оболочке) некоторых риновирусов, вызывающих простудные заболевания, препятствуют связыванию вируса с клетками организма.

Фагоцитоз

Относится к тому типу иммунной реакции, когда происходит активный захват и поглощение живых инородных клеток и неживых частиц особыми клетками — фагоцитами. Фагоциты могут действовать самостоятельно, поглощая чужеродные микроорганизмы и антитела. Но более эффективно фагоцитоз происходит в тех случаях, когда фагоциты активированы антителами или T-лимфоцитами.

Цитотоксические реакции

Цитотоксичностью обладают, прежде всего, некоторые виды T-клеток. После активации они начинают вырабатывать специальные токсичные вещества, которые убивают чужеродные и поражённые клетки организма.

Запоминание контакта с антигенами

Иммунный ответ не проходит для организма бесследно. После него остаётся иммунная память - лимфоциты, которые образуются параллельно эффекторным клеткам. В клетки памяти преобразуются как T-клетки, так и B-клетки. Эти лимфоциты не участвуют в устранении антигенов и их носителей. Но они отличаются большой продолжительностью жизни и очень быстро активируются при повторном поступлении в организм того же антигена. На наличии иммунологической памяти основано состояние иммунитета.

Вытеснение дружественными микроорганизмами

В некоторых частях сложного, многоклеточного организма живут особые дружественные микроорганизмы, предназначение которых состоит в том, чтобы конкурировать с болезнетворными микробами за ресурсы. Такое явление наблюдается на слизистых оболочках гортани, желудка и т.п.

Апоптоз

Лимфоидная система

Ссылки

mediaknowledge.ru

Иммунная система — WiKi

Имму́нная систе́ма — система органов, существующая у позвоночных животных и объединяющая органы и ткани, которые защищают организм от заболеваний, идентифицируя и уничтожая опухолевые клетки и патогены. Иммунная система распознаёт множество разнообразных возбудителей — от вирусов до паразитических червей — и отличает их от биомолекул собственных клеток. Распознавание возбудителей усложняется их адаптацией и эволюционным развитием новых методов успешного инфицирования организма-хозяина.

Конечной целью иммунной системы является уничтожение чужеродного агента, которым может оказаться болезнетворный микроорганизм, инородное тело, ядовитое вещество или переродившаяся клетка самого организма. Этим достигается биологическая индивидуальность организма.

В иммунной системе развитых организмов существует множество способов обнаружения и удаления чужеродных агентов: этот процесс называется иммунным ответом. Все формы иммунного ответа можно разделить на врождённые и приобретённые реакции. Основное различие между ними в том, что приобретённый иммунитет высокоспецифичен по отношению к конкретному типу антигенов и позволяет быстрее и эффективнее уничтожать их при повторном столкновении. Антигенами называют молекулы, воспринимаемые как чужеродные агенты и вызывающие специфические реакции организма. Например, у перенёсших ветрянку, корь, дифтерию людей часто возникает пожизненный иммунитет к этим заболеваниям. В случае аутоиммунных реакций антигеном может служить молекула, произведённая самим организмом.

Эволюция иммунных механизмов

Защитные механизмы, направленные на распознавание и обезвреживание возбудителей, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые предотвращают заражение бактерии вирусом. Другие базовые иммунные механизмы развились в процессе эволюции у древних эукариот и сохранились у их современных потомков, в том числе у растений и животных. К таким механизмам относятся антимикробные пептиды, дефензины, рецепторы распознавания специфических последовательностей и система комплемента.

Короткие фрагменты РНК, которые избирательно синтезируются только в клетках половых органов (открыты в 2000-х годах), способны подавлять активность транспозонов (могут вызывать мутации при перемещении по геному) и передаются по материнской линии потомству. Потомство дрозофил получает в комплекте с ДНК такой молекулярный переключатель, который подавляет активность вредных генетических элементов[1].

Более сложные механизмы развились относительно недавно, в ходе эволюции позвоночных[2].

Иммунная система у позвоночных (например, у человека) состоит из множества видов белков, клеток, органов и тканей, взаимодействия между которыми сложны и динамичны. Благодаря такой усовершенствованной иммунной реакции система позвоночных со временем приспосабливается, и распознавание конкретных чужеродных веществ или клеток становится более эффективным. В процессе адаптации создаётся иммунологическая память, которая позволяет ещё более эффективно защищать организм при следующей встрече с этими возбудителями. Такой вид приобретённого иммунитета лежит в основе методик вакцинации.

У теплокровных сохранение гомеостаза уже обеспечивается двумя иммунными механизмами (разными по времени эволюционного появления): температура (общее воздействие) и антитела (избирательное воздействие).

Морфология иммунной системы

Иммунная система человека и других позвоночных представляет из себя комплекс органов и клеток, способных выполнять иммунологические функции. Прежде всего иммунный ответ осуществляют лейкоциты. Бо́льшая часть клеток иммунной системы происходит из кроветворных тканей. У взрослых людей развитие этих клеток начинается в костном мозге. Лишь T-лимфоциты дифференцируются внутри тимуса (вилочковой железы). Зрелые клетки расселяются в лимфоидных органах и на границах с окружающей средой, около кожи или на слизистых оболочках.

Организм животных, обладающих механизмами приобретённого иммунитета, производит множество разновидностей специфических иммунных клеток, каждая из которых отвечает за какой-то определённый антиген. Наличие большого количества разновидностей иммунных клеток необходимо для того, чтобы отражать атаки микроорганизмов, способных мутировать и изменять свой антигенный состав. Значительная часть этих клеток завершает свой жизненный цикл, так и не приняв участие в защите организма, например, не встретив подходящих антигенов.

Многоэтапность иммунной защиты

Иммунная система защищает организм от инфекции в несколько этапов, при этом с каждым этапом повышается специфичность защиты. Самая простая линия защиты представляет собой физические барьеры, которые предотвращают попадание инфекции — бактерий и вирусов — в организм. Если возбудитель проникает через эти барьеры, промежуточную неспецифическую реакцию на него осуществляет врождённая иммунная система. Врождённая иммунная система обнаруживается у всех растений и животных[3]. На случай, когда возбудители успешно преодолевают воздействие врождённых иммунных механизмов, у позвоночных существует третий уровень защиты — приобретённая иммунная защита. Эта часть иммунной системы адаптирует свою реакцию во время инфекционного процесса, чтобы улучшить распознавание чужеродного биологического материала. Такой улучшенный ответ сохраняется после уничтожения возбудителя в виде иммунологической памяти. Она позволяет механизмам приобретённого иммунитета развивать более быструю и более сильную ответную реакцию при каждом появлении такого же возбудителя[4].

Две стороны иммунной системы Врождённый иммунитет Приобретённый иммунитет
Реакция неспецифична Специфическая реакция, привязанная к чужеродному антигену
Столкновение с инфекцией приводит к немедленной максимальной реакции Между контактом с инфекцией и максимальным ответом латентный период
Клеточные и гуморальные звенья Клеточные и гуморальные звенья
Не обладает иммунологической памятью Столкновение с чужеродным агентом приводит к иммунологической памяти
Обнаруживается практически у всех форм жизни Обнаружена только у некоторых организмов

Как врождённый, так и приобретённый иммунитет, зависят от способности иммунной системы отличать свои молекулы от чужих. В иммунологии под своими молекулами понимают те компоненты организма, которые иммунная система способна отличить от чужеродных[5]. Напротив, чужими называют молекулы, которые распознаются как чужеродные. Один из классов "чужих" молекул называют антигенами (термин произошёл от сокращения англ.  antibody generators — «вызывающие антитела») и определяют как вещества, связываемые со специфическими иммунными рецепторами и вызывающие иммунный ответ[6].

Поверхностные барьеры

Организмы защищены от инфекций рядом механических, химических и биологических барьеров. Примерами механических барьеров, служащих первым этапом защиты от инфекции, могут служить восковое покрытие многих листьев растений, экзоскелет членистоногих, скорлупа яиц и кожа[7]. Однако организм не может быть полностью отграничен от внешней среды, поэтому существуют и другие системы, защищающие внешние сообщения организма — дыхательную, пищеварительную и мочеполовую системы. Эти системы можно разделить на постоянно действующие и включающиеся в ответ на вторжение. Пример постоянно действующей системы — крохотные волоски на стенках трахеи, называемые ресничками, которые совершают быстрые движения, направленные вверх, удаляя частицы пыли, пыльцу растений или другие мелкие инородные объекты, чтобы они не могли попасть в лёгкие. Аналогичным образом, изгнание микроорганизмов осуществляется при помощи промывного действия слёз и мочи. Слизь, секретируемая в дыхательную и пищеварительную систему, служит для связывания и обездвиживания микроорганизмов[8].

Если постоянно действующих механизмов оказывается недостаточно, то включаются «аварийные» механизмы очистки организма, такие как кашель, чихание, рвота и диарея.

Помимо этого, существуют химические защитные барьеры. Кожа и дыхательные пути выделяют антимикробные пептиды, например бета-дефензины[9]. Такие ферменты, как лизоцим и фосфолипаза A, содержатся в слюне, слезах и грудном молоке, и также обладают антимикробным действием[10][11]. Выделения из влагалища служат химическим барьером после начала менструаций, когда они становятся слабокислыми. Сперма содержит дефензины и цинк для уничтожения возбудителей[12][13]. В желудке соляная кислота и протеолитические ферменты служат мощными химическими защитными факторами в отношении попавших с пищей микроорганизмов.

В мочеполовом и желудочно-кишечном трактах существуют биологические барьеры, представленные дружественными микроорганизмами — комменсалами. Приспособившаяся к обитанию в этих условиях неболезнетворная микрофлора конкурирует с патогенными бактериями за пищу и пространство, и, в ряде случаев, изменяя условия обитания, в частности pH или содержание железа[14]. Это снижает вероятность достижения болезнетворными микробами достаточных для возникновения патологии количеств. Поскольку большая часть антибиотиков неспецифически воздействует на бактерии, и, зачастую, не затрагивает грибы, антибактериальная терапия может приводить к чрезмерному «разрастанию» грибковых микроорганизмов, что вызывает такие заболевания, как молочница (кандидоз)[15]. Есть убедительные сведения, подтверждающие, что введение пробиотической флоры, например чистых культур лактобацилл, которые содержатся, в частности, в йогурте и других кисломолочных продуктах, помогает восстановить нужный баланс микробных популяций при кишечных инфекциях у детей. Также существуют обнадёживающие данные в исследованиях применения пробиотиков при бактериальном гастроэнтерите, воспалительных заболеваниях кишечника, инфекциях мочевыводящих путей и послеоперационных инфекциях[16][17][18].

Врождённый иммунитет

Если микроорганизму удаётся проникнуть через первичные барьеры, он сталкивается с клетками и механизмами системы врождённого иммунитета. Врождённая иммунная защита неспецифична, то есть её звенья распознают и реагируют на чужеродные тела независимо от их особенностей[7]. Эта система не создаёт длительной невосприимчивости к конкретной инфекции. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов[3].

Гуморальные и биохимические факторы

Воспаление

Воспаление — одна из наиболее ранних реакций иммунной системы на инфекцию[19]. К симптомам воспаления относятся покраснение и отёк, что свидетельствует об усилении притока крови к вовлечённым в процесс тканям. В развитии воспалительной реакции важную роль играют эйкозаноиды и цитокины, высвобождаемые повреждёнными или инфицированными клетками. К эйкозаноидам относятся простагландины, вызывающие повышение температуры и расширение кровеносных сосудов, и лейкотриены, которые привлекают определённые виды белых кровяных телец (лейкоцитов)[20][21]. К наиболее распространённым цитокинам относятся интерлейкины, отвечающие за взаимодействие между лейкоцитами, хемокины, стимулирующие хемотаксис, и интерфероны, обладающие противовирусными свойствами, в частности способностью угнетать синтез белка в клетках макроорганизма[22]. Кроме того, могут играть роль выделяемые факторы роста и цитотоксические факторы. Эти цитокины и другие биоорганические соединения привлекают клетки иммунной системы к очагу инфекции и способствуют заживлению повреждённых тканей путём уничтожения возбудителей[23].

Система комплемента

Система комплемента представляет собой биохимический каскад, который атакует мембрану чужеродных клеток. В него входят более 20 различных белков. Комплемент является основным гуморальным компонентом врождённого иммунного ответа[24][25]. Система комплемента имеется у многих видов, в том числе у ряда беспозвоночных[26].

У человека этот механизм активируется путём связывания белков комплемента с углеводами на поверхности микробных клеток, либо путём связывания комплемента с антителами, которые прикрепились к этим микробам (второй способ отражает взаимосвязь механизмов врождённого и приобретённого иммунитета). Сигнал в виде прикреплённого к мембране клетки комплемента запускает быстрые реакции, направленные на разрушение такой клетки[27]. Скорость этих реакций обусловлена усилением, возникающим вследствие последовательной протеолитической активации молекул комплемента, которые сами по себе являются протеазами. После того, как белки комплемента прикрепились к микроорганизму, запускается их протеолитическое действие, что, в свою очередь, активирует другие протеазы системы комплемента, и так далее. Таким образом возникает каскадная реакция, усиливающая исходный сигнал при помощи управляемой положительной обратной связи[28]. В результате каскада образуются пептиды, привлекающие иммунные клетки, усиливающие проницаемость сосудов и опсонизирующие поверхность клетки, помечая её «к уничтожению». Кроме того, отложение факторов комплемента на поверхности клетки может напрямую разрушать её посредством разрушения цитоплазматической мембраны[24].

Существуют три пути активации комплемента: классический, лектиновый и альтернативный. За неспецифическую реакцию врождённого иммунитета без участия антител отвечают лектиновый и альтернативный пути активации комплемента. У позвоночных комплемент также участвует в реакциях специфического иммунитета, при этом его активация обычно происходит по классическому пути[6].

Клеточные факторы врождённого иммунитета

Лейкоциты (белые кровяные тельца) часто ведут себя подобно независимым одноклеточным организмам, и представляют собой главное клеточное звено врождённого (гранулоциты и макрофаги) и приобретённого (в первую очередь лимфоциты, но их действия тесно связаны с клетками врождённой системы) иммунитета. К клеткам, воплощающим неспецифическую («врождённую») иммунную реакцию, относятся фагоциты (макрофаги, нейтрофилы и дендритные клетки), тучные клетки, базофилы, эозинофилы и естественные киллеры. Эти клетки распознают и уничтожают чужеродные частицы путём фагоцитоза (заглатывания и последующего внутриклеточного переваривания) либо, в случае крупных чужеродных тел (например, паразитов или крупных опухолевых клеток), путём выделения разрушительных частиц при непосредственном контакте[26]. Кроме того, осуществляющие неспецифический иммунитет клетки являются важными посредниками в процессе активации механизмов приобретённого иммунитета[4].

Фагоциты

Фагоцитоз представляет собой важную особенность клеточного звена врождённого иммунитета, которую осуществляют клетки, называемые фагоцитами, которые «переваривают» чужеродные микроорганизмы или частицы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в определённое место при помощи цитокинов[7]. После поглощения чужеродного микроорганизма фагоцитом он оказывается в ловушке внутриклеточного пузырька, который называется фагосомой. Фагосома сливается с другим пузырьком — лизосомой, в результате чего формируется фаголизосома. Микроорганизм погибает под воздействием пищеварительных ферментов, либо в результате дыхательного взрыва, при котором в фаголизосому высвобождаются свободные радикалы[29][30]. Фагоцитоз эволюционировал из способа получения захвата питательных веществ, но эта роль у фагоцитов была расширена, став защитным механизмом, направленным на разрушение патогенных возбудителей[31]. Фагоцитоз, вероятно, представляет собой наиболее старую форму защиты макроорганизма, поскольку фагоциты обнаруживаются как у позвоночных, так и у беспозвоночных животных[32].

К фагоцитам относятся такие клетки, как мононуклеарные фагоциты (в частности — моноциты и макрофаги), дендритные клетки и нейтрофилы. Фагоциты способны связывать микроорганизмы и антигены на своей поверхности, а затем поглощать и уничтожать их. Эта функция основана на простых механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врождённого иммунитета. С появлением специфического иммунного ответа мононуклеарные фагоциты играют важную роль в его механизмах путём представления антигенов T-лимфоцитам. Для эффективного уничтожения микробов фагоцитам требуется активация.

Нейтрофилы и макрофаги представляют собой фагоциты, которые путешествуют по организму в поисках проникших сквозь первичные барьеры чужеродных микроорганизмов[33]. Нейтрофилы обычно обнаруживаются в крови и представляют собой наиболее многочисленную группу фагоцитов, обычно представляющую около 50 %-60 % общего количества циркулирующих лейкоцитов[34]. Во время острой фазы воспаления, в частности, в результате бактериальной инфекции, нейтрофилы мигрируют к очагу воспаления. Этот процесс называется хемотаксисом. Они обычно являются первыми клетками, реагирующими на очаг инфекции. Макрофаги представляют собой клетки многоцелевого назначения, обитающие в тканях и производящие широкий спектр биохимических факторов, включая ферменты, белки системы комплемента и регуляторные факторы, например интерлейкин-1[35]. Кроме того, макрофаги выполняют роль уборщиков, избавляя организм от изношенных клеток и другого мусора, а также роль антиген-презентирующих клеток, активирующих звенья приобретённого иммунитета[4].

Дендритные клетки представляют собой фагоциты в тканях, которые соприкасаются с внешней средой, то есть расположены они, главным образом, в коже, носу, лёгких, желудке и кишечнике[36]. Они названы так, поскольку напоминают дендриты нейронов наличием многочисленных отростков, однако дендритные клетки никоим образом не связаны с нервной системой. Дендритные клетки служат связующим звеном между врождённым и приобретённым иммунитетом, поскольку они представляют антиген T-клеткам, одному из ключевых типов клеток приобретённого иммунитета[36].

Вспомогательные клетки

Вспомогательными клетками считаются тучные клетки, базофилы, эозинофилы, тромбоциты. Также в иммунной защите участвуют соматические клетки различных тканей организма. Тучные клетки находятся в соединительной ткани и слизистых оболочках и участвуют в регуляции воспалительной реакции[37]. Они очень часто связаны с аллергией и анафилаксией[34]. Они во многом напоминают базофилы — одну из малочисленных подгрупп зернистых лейкоцитов. Базофилы и эозинофилы родственны нейтрофилам. Эозинофилы секретируют биохимические медиаторы, которые участвуют в защите от крупных многоклеточных паразитов, а также играют роль в аллергических реакциях, например при бронхиальной астме[38]. Естественные киллеры (или натуральные, или нормальные, от англ. Natural killer) представляют собой лейкоциты группы лимфоцитов, которые атакуют и уничтожают опухолевые клетки, или инфицированные вирусами клетки[39].

Приобретённый иммунитет

Система приобретённого иммунитета появилась в ходе эволюции низших позвоночных. Она обеспечивает более интенсивный иммунный ответ, а также иммунологическую память, благодаря которой каждый чужеродный микроорганизм «запоминается» по уникальным для него антигенам[40]. Система приобретённого иммунитета антигенспецифична и требует распознавания специфических чужих («не своих») антигенов в процессе, называемом презентацией антигена. Специфичность антигена позволяет осуществлять реакции, которые предназначены конкретным микроорганизмам или инфицированным ими клеткам. Способность к осуществлению таких узконаправленных реакций поддерживается в организме «клетками памяти». Если макроорганизм инфицируется микроорганизмом более одного раза, эти специфические клетки памяти используются для быстрого уничтожения такого микроорганизма.

Лимфоциты

Клетки иммунной системы, на которые возложены ключевые функции по осуществлению приобретённого иммунитета, относятся к лимфоцитам, которые являются подтипом лейкоцитов. Большая часть лимфоцитов отвечает за специфический приобретённый иммунитет, так как могут распознавать возбудителей инфекции внутри или вне клеток, в тканях или в крови.

Основными типами лимфоцитов являются B-клетки и T-клетки, которые происходят из плюрипотентных гемопоэтических стволовых клеток; у взрослого человека они образуются в костном мозге[26], а T-лимфоциты дополнительно проходят часть этапов дифференцировки в тимусе. B-клетки отвечают за гуморальное звено приобретённого иммунитета, то есть вырабатывают антитела, в то время как T-клетки представляют собой основу клеточного звена специфического иммунного ответа.

В организме предшественники лимфоцитов непрерывно продуцируются в ходе дифференциации стволовых кроветворных клеток, при этом вследствие мутаций генов, кодирующих вариабельные цепи антител, возникает множество клеток, чувствительных к множеству потенциально существующих антигенов. На этапе развития лимфоциты проходят отбор: остаются только значимые с точки зрения защиты организма, а также те, которые не несут угрозы собственным тканям организма. Параллельно с этим процессом лимфоциты разделяются на группы, способные выполнять ту или иную функцию защиты. Существуют разные виды лимфоцитов. В частности, по морфологическим признакам их разделяют на малые лимфоциты и большие гранулярные лимфоциты (БГЛ). По структуре внешних рецепторов среди лимфоцитов выделяют, в частности, B-лимфоциты и T-лимфоциты.

Как B-, так и T-клетки несут на своей поверхности рецепторные молекулы, которые распознают специфические мишени. Рецепторы представляют из себя как бы «зеркальный отпечаток» определённой части чужеродной молекулы, способный присоединяться к ней. При этом одна клетка может содержать рецепторы только для одного вида антигенов.

T-клетки распознают чужеродные («не-свои») мишени, такие как патогенные микроорганизмы, только после того, как антигены (специфические молекулы чужеродного тела) будут обработаны и презентированы в сочетании с собственной («своей») биомолекулой, которая называется молекулой главного комплекса гистосовместимости (англ. major histocompatibility complex, MHC). Среди T-клеток различают ряд подтипов, в частности, Т-киллеры, Т-хелперы и регуляторные Т-клетки.

T-киллеры распознают только антигены, которые объединены с молекулами главного комплекса гистосовместимости I класса, в то время как T-хелперы распознают только антигены, расположенные на поверхности клеток в сочетании с молекулами главного комплекса гистосовместимости II класса. Это различие в презентации антигена отражает разные роли указанных двух типов T-клеток. Другим, менее распространённым подтипом T-клеток, являются γδ T-клетки, которые распознают неизменённые антигены, не связанные с рецепторами главного комплекса гистосовместимости[41].

У T-лимфоцитов круг задач весьма широк. Часть из них — регуляция приобретённого иммунитета с помощью специальных белков (в частности, цитокинов), активация B-лимфоцитов для образования антител, а также регуляция активации фагоцитов для более эффективного разрушения микроорганизмов. Эту задачу выполняет группа T-хелперов. За разрушение собственных клеток организма путём выделения цитотоксичных факторов при непосредственном контакте отвечают T-киллеры, которые действуют специфически.

В отличие от T-клеток, B-клетки не нуждаются в обработке антигена и экспрессии его на поверхности клетки. Их рецепторы к антигену представляют собой фиксированные на поверхности B-клетки антителоподобные белки. Каждая прошедшая дифференцировку линия B-клеток экспрессирует уникальное только для неё антитело, и никакое другое. Таким образом, полный набор антигенных рецепторов всех B-клеток организма представляет все антитела, которые организм может вырабатывать[26]. Функция B-лимфоцитов заключается прежде всего в выработке антител — гуморального субстрата специфического иммунитета, — действие которых направлено прежде всего против внеклеточно расположенных возбудителей.

Кроме того, существуют лимфоциты, неспецифически проявляющие цитотоксичность — естественные киллеры.

T-киллеры

Т-киллеры представляют собой подгруппу T-клеток, функцией которых является разрушение собственных клеток организма, инфицированных вирусами или другими патогенными внутриклеточными микроорганизмами[42], либо клеток, которые повреждены или неверно функционируют (например, опухолевые клетки). Как и B-клетки, каждая конкретная линия T-клеток распознает только один антиген. T-киллеры активируются при соединении своим T-клеточным рецептором (ТКР) со специфическим антигеном в комплексе с рецептором главного комплекса гистосовместимости I класса другой клетки. Распознавание этого комплекса рецептора гистосовместимости с антигеном осуществляется при участии расположенного на поверхности T-клетки вспомогательного рецептора CD8. В лабораторных условиях T-клетки обычно выявляют именно по экспрессии CD8. После активации T-клетка перемещается по организму в поисках клеток, на которых белок I класса главного комплекса гистосовместимости содержит последовательность нужного антигена. При контакте активированного T-киллера с такими клетками он выделяет токсины, образующие отверстия в цитоплазматической мембране клеток-мишеней, в результате ионы, вода и токсин свободно перемещаются в клетку-мишень и из неё: клетка-мишень погибает[43]. Разрушение собственных клеток T-киллерами важно, в частности, для предотвращения размножения вирусов. Активация T-киллеров жёстко управляется и обычно требует очень сильного сигнала активации от комплекса белка гистосовместимости с антигеном, либо дополнительной активации факторами T-хелперов[43].

T-хелперы

Т-хелперы регулируют реакции как врождённого, так и приобретённого иммунитета, и позволяют определять тип ответа, который организм окажет на конкретный чужеродный материал[44][45]. Эти клетки не проявляют цитотоксичности и не участвуют в уничтожении инфицированных клеток или непосредственно возбудителей. Вместо этого, они управляют иммунным ответом, направляя другие клетки на выполнение этих задач.

T-хелперы экспрессируют T-клеточные рецепторы (ТКР), которые распознают антигены, связанные с молекулами II класса главного комплекса гистосовместимости. Комплекс молекулы главного комплекса гистосовместимости с антигеном также распознается корецептором клеток-хелперов CD4, который привлекает внутриклеточные молекулы T-клетки (например, Lck), ответственные за активацию T-клетки. T-хелперы обладают меньшей чувствительностью к комплексу молекулы главного комплекса гистосовместимости и антигена, чем T-киллеры, то есть для активации T-хелпера требуется связывание гораздо большего количества его рецепторов (около 200—300) с комплексом молекулы гистосовместимости и антигена, в то время как T-киллеры могут быть активированы после связывания с одним таким комплексом. Активация T-хелпера также требует более продолжительного контакта с антиген-презентирующей клеткой[46]. Активация неактивного T-хелпера приводит к высвобождению им цитокинов, которые оказывают влияние на активность многих видов клеток. Цитокиновые сигналы, создаваемые T-хелперами, усиливают бактерицидную функцию макрофагов и активность T-киллеров[7]. Кроме того, активация T-хелперов вызывает изменения в экспрессии молекул на поверхности T-клетки, в частности лиганда CD40 (также известного под обозначением CD154), что создаёт дополнительные стимулирующие сигналы, обычно требуемые для активации вырабатывающих антитела B-клеток[47].

Гамма-дельта T-клетки

5-10 % T-клеток несут на своей поверхности гамма-дельта-ТКР и обозначаются как γδ T-клетки.

B-лимфоциты и антитела

В-клетки составляют 5-15 % циркулирующих лимфоцитов и характеризуются поверхностными иммуноглобулинами, встроенными в клеточную мембрану и выполняющими функцию специфического антигенного рецептора. Этот рецептор, специфичный лишь для определённого антигена, называется антителом. Антиген, связываясь с соответствующим антителом на поверхности В-клетки, индуцирует пролиферацию и дифференцировку В-клетки до плазматических клеток и клеток памяти, специфичность которых такая же, как и специфичность исходной В-клетки. Плазматические клетки секретируют большое количество антител в виде растворимых молекул, распознающих исходный антиген. Секретируемые антитела имеют ту же специфичность, что и соответствующий В-клеточный рецептор.

Антиген-презентирующие клетки

См. Дендритные клетки

Иммунологическая память

Иммунологическая память — это способность иммунной системы отвечать более быстро и эффективно на антиген (патоген), с которым у организма был предварительный контакт.

Такая память обеспечивается предсуществующими антигенспецифическими клонами как В-клеток, так и Т-клеток, которые функционально более активны в результате прошедшей первичной адаптации к определённому антигену.

Пока неясно, устанавливается ли память в результате формирования долгоживущих специализированных клеток памяти или же память отражает собой процесс рестимуляции лимфоцитов постоянно присутствующим антигеном, попавшим в организм при первичной иммунизации.

Иммунологические расстройства у человека

Иммунодефициты

Иммунодефициты (ИДС) — это нарушения иммунологической реактивности, которые обусловлены выпадением одного или нескольких компонентов иммунного аппарата или тесно взаимодействующих с ним неспецифических факторов.

Аутоиммунные процессы

Аутоиммунные процессы — это в значительной степени хронические явления, которые приводят к долговременному повреждению тканей. Это связано в первую очередь с тем, что аутоиммунная реакция постоянно поддерживается тканевыми антигенами.

Гиперчувствительность

Гиперчувствительность — это термин, используемый для обозначения иммунного ответа, который протекает в аггравированной и неадекватной форме, в результате чего происходит повреждение тканей.

Другие защитные механизмы макроорганизма

Иммунология опухолей

К аспектам иммунологии опухолей относятся три основных направления исследований:

  • Использование методов иммунологии для диагностики опухолей, определения прогноза и выработки тактики лечения заболевания;
  • Осуществление иммунотерапии в качестве дополнения к другим видам лечения и для иммунокоррекции — восстановления деятельности иммунной системы;
  • Определение роли иммунологического наблюдения за опухолями у человека.

Управление иммунной системой

Физиологические механизмы

Применяемые в медицине методы воздействия

Существует несколько методов влияния на иммунный ответ для подавления нежелательных эффектов, вызываемых аутоиммунными заболеваниями, аллергиями, пересадкой органов, либо для стимулирования защитного ответа против определенных патогенов (иммунизация при помощи вакцин[48]) или отдельных видов опухолей.

Иммуносупрессия

Иммуносупрессия (иммунодепрессия) — угнетение иммунитета с помощью лекарственных препаратов (иммуносупрессоров) при аутоиммунных заболеваниях или воспалениях, при которых происходит избыточное повреждение тканей. Длительная постоянная иммуносупрессия необходима после пересадки органов для предотвращения отторжения органа[49][50].

Противовоспалительные лекарственные средства часто применяются для управления эффектами воспаления. Наиболее сильное действие среди них оказывают Глюкокортикоиды, однако они часто имеют нежелательные побочные эффекты, и их применение требует контроля.[51] В малых дозах противовоспалительные средства применяются вместе с цитотоксинами или иммуносупрессорами (например Метотрексат или Азатиоприн).

Цитотоксические препараты применяемые в химиотерапии подавляют иммунный ответ, препятствуя размножению определенных видов клеток, в частности, активированных T-лимфоцитов. Такие препараты воздействуют на все активно делящиеся клетки и органы, их содержащие, что вызывает серьезные побочные эффекты.[50] Некоторые иммуносупрессоры, например Циклоспорин, действует на Т-лимфоциты, подавляя некоторые пути передачи сигнала.[52]

Иммуностимуляция

Существует несколько видов иммунотерапии опухолей, при которой стимулируется атака иммунной системы против новообразований.

Вакцинация позволяет выработать иммунитет к ряду инфекционных заболеваний[48].

Механизмы обхода иммунитета возбудителями

История развития представлений об иммунной системе

В 1796 году английский учёный Эдвард Дженнер (1749—1823) разработал способ искусственной иммунизации против оспы путём заражения человека коровьей оспой[53].

Открытие Луи Пастера (1880) дало начало иммунологии как самостоятельной науке. Пастер обнаружил, что иммунизация кур старой холерной культурой создаёт у них устойчивость к заражению высоковирулентным возбудителем куриной холеры и сформулировал основной принцип создания вакцин, а также получил вакцины против сибирской язвы и против бешенства[53].

Илья Ильич Мечников открыл феномен фагоцитоза (1887) и создал клеточную или фагоцитарную теорию иммунитета[53].

Немецкий учёный Пауль Эрлих выдвинул гуморальную теорию иммунитета. С 1898 по 1899 год бельгийский учёный Жюль Борде и русский учёный Н. Н. Чистович обнаружили образование антител в ответ на введение чужеродных эритроцитов и сывороточных белков. Данное открытие положило начало неинфекционной иммунологии[53].

В 1900 году австрийский иммунолог Карл Ландштейнер сделал открытие групп крови человека. Он создал основу учения о тканевых изоантигенах[53].

См. также

Примечания

  1. ↑ Биологи изменили классические представления о наследственности
  2. ↑ Beck, Gregory; Gail S. Habicht (November 1996). «Immunity and the Invertebrates» (PDF). Scientific American: 60-66. Проверено 2007-01-01.
  3. ↑ 1 2 Litman G, Cannon J, Dishaw L (2005). «Reconstructing immune phylogeny: new perspectives.». Nat Rev Immunol 5 (11): 866-79. PMID 16261174.
  4. ↑ 1 2 3 Mayer, Gene Immunology - Chapter One: Innate (non-specific) Immunity. Microbiology and Immunology On-Line Textbook. USC School of Medicine (2006). Проверено 1 января 2007. Архивировано 23 августа 2011 года.
  5. ↑ Smith A.D. (Ed) Oxford dictionary of biochemistry and molecular biology. (1997) Oxford University Press. ISBN 0-19-854768-4
  6. ↑ 1 2 Ройт, Иммунология. 2000. ISBN 5-03-003305-X
  7. ↑ 1 2 3 4 Alberts, Bruce. Molecular Biology of the Cell; Fourth Edition. — New York and London : Garland Science, 2002. — ISBN ISBN 0-8153-3218-1.
  8. ↑ Boyton R, Openshaw P. «Pulmonary defences to acute respiratory infection.». Br Med Bull 61: 1-12. PMID 11997295.
  9. ↑ Agerberth B, Gudmundsson G. «Host antimicrobial defence peptides in human disease.». Curr Top Microbiol Immunol 306: 67-90. PMID 16909918.
  10. ↑ Moreau J, Girgis D, Hume E, Dajcs J, Austin M, O'Callaghan R (2001). «Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus.». Invest Ophthalmol Vis Sci 42 (10): 2347-54. PMID 11527949.
  11. ↑ Hankiewicz J, Swierczek E (1974). «Lysozyme in human body fluids.». Clin Chim Acta 57 (3): 205-9. PMID 4434640.
  12. ↑ Fair W, Couch J, Wehner N (1976). «Prostatic antibacterial factor. Identity and significance.». Urology 7 (2): 169-77. PMID 54972.
  13. ↑ Yenugu S, Hamil K, Birse C, Ruben S, French F, Hall S (2003). «Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli.». Biochem J 372 (Pt 2): 473-83. PMID 12628001.
  14. ↑ Gorbach S (1990). «Lactic acid bacteria and human health». Ann Med 22 (1): 37–41. PMID 2109988.
  15. ↑ Hill L, Embil J (1986). «Vaginitis: current microbiologic and clinical concepts.». CMAJ 134 (4): 321-31. PMID 3510698.
  16. ↑ Reid G, Bruce A (2003). «Urogenital infections in women: can probiotics help?». Postgrad Med J 79 (934): 428-32. PMID 12954951.
  17. ↑ Salminen S, Gueimonde M, Isolauri E (2005). «Probiotics that modify disease risk». J Nutr 135 (5): 1294–8. PMID 15867327.
  18. ↑ Reid G, Jass J, Sebulsky M, McCormick J (2003). «Potential uses of probiotics in clinical practice». Clin Microbiol Rev 16 (4): 658-72. PMID 14557292.
  19. ↑ Kawai T, Akira S (2006). «Innate immune recognition of viral infection». Nat Immunol 7 (2): 131-7. PMID 16424890.
  20. ↑ Miller, SB (2006). «Prostaglandins in Health and Disease: An Overview». Seminars in Arthritis and Rheumatism 36 (1): 37-49. PMID 16887467.
  21. ↑ Ogawa Y, Calhoun WJ. (2006). «The role of leukotrienes in airway inflammation.». J Allergy Clin Immunol. 118 (4): 789-98. PMID 17030228.
  22. ↑ Le Y, Zhou Y, Iribarren P, Wang J (2004). «Chemokines and chemokine receptors: their manifold roles in homeostasis and disease». Cell Mol Immunol 1 (2): 95-104. PMID 16212895.
  23. ↑ Martin P, Leibovich S (2005). «Inflammatory cells during wound repair: the good, the bad and the ugly.». Trends Cell Biol 15 (11): 599-607. PMID 16202600.
  24. ↑ 1 2 Rus H, Cudrici C, Niculescu F (2005). «The role of the complement system in innate immunity.». Immunol Res 33 (2): 103-12. PMID 16234578.
  25. ↑ Mayer, Gene Immunology - Chapter Two: Complement. Microbiology and Immunology On-Line Textbook. USC School of Medicine (2006). Проверено 1 января 2007. Архивировано 23 августа 2011 года.
  26. ↑ 1 2 3 4 Janeway CA, Jr. et al. Immunobiology.. — 6th ed. — Garland Science, 2005. — ISBN ISBN 0-443-07310-4.
  27. ↑ Liszewski M, Farries T, Lublin D, Rooney I, Atkinson J. «Control of the complement system.». Adv Immunol 61: 201-83. PMID 8834497.
  28. ↑ Sim R, Tsiftsoglou S (2004). «Proteases of the complement system.». Biochem Soc Trans 32 (Pt 1): 21-7. PMID 14748705.
  29. ↑ Ryter A (1985). «Relationship between ultrastructure and specific functions of macrophages.». Comp Immunol Microbiol Infect Dis 8 (2): 119-33. PMID 3910340.
  30. ↑ Langermans J, Hazenbos W, van Furth R (1994). «Antimicrobial functions of mononuclear phagocytes». J Immunol Methods 174 (1-2): 185-94. PMID 8083520.
  31. ↑ May R, Machesky L (2001). «Phagocytosis and the actin cytoskeleton». J Cell Sci 114 (Pt 6): 1061-77. PMID 11228151.
  32. ↑ Salzet M, Tasiemski A, Cooper E (2006). «Innate immunity in lophotrochozoans: the annelids». Curr Pharm Des 12 (24): 3043-50. PMID 16918433.
  33. ↑ Zen K, Parkos C (2003). «Leukocyte-epithelial interactions». Curr Opin Cell Biol 15 (5): 557-64. PMID 14519390.
  34. ↑ 1 2 Stvrtinová, Viera. Inflammation and Fever from Pathophysiology: Principles of Disease. — Computing Centre, Slovak Academy of Sciences : Academic Electronic Press, 1995.
  35. ↑ Bowers, William Immunology -Chapter Thirteen: Immunoregulation. Microbiology and Immunology On-Line Textbook. USC School of Medicine (2006). Проверено 4 января 2007. Архивировано 23 августа 2011 года.
  36. ↑ 1 2 Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. «Antigen presentation and T cell stimulation by dendritic cells». Annu Rev Immunol 20: 621-67. PMID 11861614.
  37. ↑ Krishnaswamy G, Ajitawi O, Chi D. «The human mast cell: an overview.». Methods Mol Biol 315: 13-34. PMID 16110146.
  38. ↑ Kariyawasam H, Robinson D (2006). «The eosinophil: the cell and its weapons, the cytokines, its locations». Semin Respir Crit Care Med 27 (2): 117-27. PMID 16612762.
  39. ↑ Middleton D, Curran M, Maxwell L (2002). «Natural killer cells and their receptors». Transpl Immunol 10 (2-3): 147-64. PMID 12216946.
  40. ↑ Pancer Z, Cooper M. «The evolution of adaptive immunity». Annu Rev Immunol 24: 497-518. PMID 16551257.
  41. ↑ Holtmeier W, Kabelitz D. «gammadelta T cells link innate and adaptive immune responses». Chem Immunol Allergy 86: 151-83. PMID 15976493.
  42. ↑ Harty J, Tvinnereim A, White D. «CD8+ T cell effector mechanisms in resistance to infection». Annu Rev Immunol 18: 275-308. PMID 10837060.
  43. ↑ 1 2 Radoja S, Frey A, Vukmanovic S (2006). «T-cell receptor signaling events triggering granule exocytosis». Crit Rev Immunol 26 (3): 265-90. PMID 16928189.
  44. ↑ Abbas A, Murphy K, Sher A (1996). «Functional diversity of helper T lymphocytes». Nature 383 (6603): 787-93. PMID 8893001.
  45. ↑ McHeyzer-Williams L, Malherbe L, McHeyzer-Williams M. «Helper T cell-regulated B cell immunity». Curr Top Microbiol Immunol 311: 59–83. PMID 17048705.
  46. ↑ Kovacs B, Maus M, Riley J, Derimanov G, Koretzky G, June C, Finkel T (2002). «Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation». Proc Natl Acad Sci U S A 99 (23): 15006-11. PMID 12419850.
  47. ↑ Grewal I, Flavell R. «CD40 and CD154 in cell-mediated immunity». Annu Rev Immunol 16: 111-35. PMID 9597126.
  48. ↑ 1 2 ВОЗ | Иммунизация
  49. ↑ Janeway CA, Jr. Immunobiology. — 6th. — Garland Science, 2005. — ISBN 0-443-07310-4.
  50. ↑ 1 2 (Oct 2005) «Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy». Critical Reviews in Oncology/Hematology 56 (1): 23–46. DOI:10.1016/j.critrevonc.2005.03.012. PMID 16039869.
  51. ↑ (Mar 2006) «Corticosteroids: the drugs to beat». European Journal of Pharmacology 533 (1-3): 2–14. DOI:10.1016/j.ejphar.2005.12.052. PMID 16436275.
  52. ↑ (Jul 2003) «The mosaic of immunosuppressive drugs». Molecular Immunology 39 (17-18): 1073–7. DOI:10.1016/S0161-5890(03)00075-0. PMID 12835079.
  53. ↑ 1 2 3 4 5 Иммунология — статья из Большой советской энциклопедии. 

Ссылки

ru-wiki.org


Смотрите также