Кафедра органического синтеза и нанотехнологий. Вакцины химические это


91. Химические (субклеточные) вакцины. Получение. Преимущества. Применение. Роль адъювантов.

Химическими вакцинами принято называть препараты, содержащие наиболее активные по иммунологическим свойствам антигены, извлекаемые из микробных клеток различными методами (например, ферментативным перевариванием с последующим осаждением антигена этиловым спиртом). Следует помнить, что термин «химическая» вакцина не вполне оответствует своему названию, так как такие вакцины не являются химическими веществами в чистом виде, а представляют собой группы антигенов, эндотоксины и т. д. Преимущество химических вакцин в том, что, во-первых, из микробных клеток выделяются иммунологически активные субстанции — изолированные антигены (комплекс—-липополисахариды с полипептидами или протективные антигены), во-вторых, они менее реактогенны, в-третьих, стабильны и легче подвергаются стандартизации, что дает возможность более точно дозировать, и, наконец, четвертое — химические вакцины можно вводить в больших дозах и в виде ассоциированных препаратов. Одним из недостатков химической вакцины являются не-

большие размеры вводимых комплексов, что приводит к быстрому выведению их из организма и краткому антигенному раздражению. Поэтому химические вакцины вводятся на адъювантах (лат. adjuvans — помогающий), в качестве которых используются различные минеральные адсорбенты(гидрат окиси алюминия, фосфат кальция), минеральные масла. Адъюванты способствуют повышению эффективности вакцинации, так как они укрупняют антигенные частицы, создают в месте введения «депо», из которого происходит замедленная резорбция антигена, что приводит к перманентному антигенному раздражению. Кроме того, депонирующие вещества являются неспецифическими стимуляторами, вызывая приток плазматических клеток, непосредственно участвующих в выработке антител, что связано с развитием местного воспалительного процесса и стимуляции пролиферативной и фагоцитарной активности ретикуло-эндотелиальной системы.

92. Анатоксины, их получение, титрование и практическое применение.

Анатоксины (anatoxinum от греч.— «an» — отрицание и toxo» — отравляю) представляют собой препараты, полученные из бактериальных экзотоксинов, полностью лишенные т ксических свойств, но сохранившие антигенные и иммуногенные свойства. Метод получения анатоксина предложил в 1923 году крупнейший французский ученый Рамон (G. Ramon).При приготовлении анатоксинов культуры бактерий — возбудителей токсинемических инфекций, продуцирующих экзотоксины, выращивают в жидких питательных средах (реакто-

рах большой емкости) для накопления токсина. Затем фильтруют через бактериальные фильтры для удаления микробных тел. К фильтрату добавляют 0,3—0,4 % —формалина и помещают в термостат при температуре 37°—40°С н а 3—4 недели до полного исчезновения токсических свойств. Полученный анатоксин проверяют на стерильность, безвредность и иммуногенность. Такие препараты получили название нативных анатоксинов, т. к. они содержат большое количество веществ питательной среды, которые являются балластными и могут

способствовать развитию нежелательных реакций организма при введении препарата. Нативные анатоксины необходимо вводить в больших дозах из-за их невысокой удельной активности. Поэтому в настоящее время применяются преимущественно очищенные анатоксины, для чего нативные анатоксины подвергают обработке различными физическими и химическими методами (ионнообменной хромотографии, кислотному осаждению и др.), чтобы освободить от всех балластных веществ и сконцентрировать препарат в меньшем объеме. Однако уменьшение размеров частиц анатоксина сделало необходимым адсорбировать препарат на адъютантах

Таким образом, применяющиеся анатоксины являются адсорбированными высокоочищенными концентрированными препаратам:'Специфическую активность или силу анатоксина определяют в реакции флоккуляции в так называемых единицах флоккуляции— (Lf) или по реакции связывания анатоксинов, выражающуюся в единицах связывания— (ЕС). Титрование анатоксинов в реакции флоккуляции (по методу Рамона) производят по стандартной флоккулирующей антитоксической сыворотке, в которой известно количество международных антитоксических единиц (ME, см. с. 23) в 1 мл. Одна антигенная единица анатоксина обозначается Limes flocculationis (Lf — порог флоккуляции), это то количество анатоксина, которое вступает в реакцию флоккуляции с одной единицей дифтерийного антитоксина. Определив дозу анатоксина, давшую инициальную (первичную) реакцию флоккуляции с одной антитоксической единицей сыворотки, рассчитывают количество Lf препарата в 1 мл. Антигенные свойства столбнячного анатоксина (и некоторых других) обозначают в единицах связывания (ЕС). Для определения ЕС необходимы:испытуемый препарат анатоксина, стандартная антитоксическая сыворотка (с содержанием 0,1 ME в 1 мл), опытная доза токсина (вытитрованная к 0,1 ME стандартной сыворотки), белые мыши.Реакцию связывания проводят следующим образом: в ряд пробирок с одинаковым объемом стандартной сыворотки добавляют различные разведения испытуемого анатоксина.Смесь для связывания выдерживают в термостате 45 минут,затем в каждую пробирку добавляют опытную дозу токсина и вновь оставляют в термостате на 45 минут. После этого из каждой пробирки вводят смесь (сыворотки — анатоксина —токсина) 2—4 мышам и наблюдают за состоянием животных в течение 4 суток. Если весь анатоксин, добавленный к сыворотке, связался ею, то добавление токсина и последующее

заражение мышей ведет к их гибели. При недостаточной дозе анатоксина для связывания всей сыворотки, добавленный токсин нейтрализуется сывороткой, и мыши остаются живыми. Для расчета ЕС в 1 мл определяемого анатоксина берется то разведение анатоксина, при котором происходит гибель 50% белых мышей на 4-е сутки. Это количество анатоксина содержит дозу, связывающую 0,1 ME сыворотки. Анатоксины применяются для профилактики и реже для лечения токсинемических инфекций (дифтерия, газовая ган-

грена, ботулизм, столбняк) и некоторых заболеваний, вызванных стафилококками.

studfiles.net

Компоненты вакцин. Ответы на вопросы. (Инфографика).

Химия Вакцин

Последняя вспышка кори в США в очередной раз вызвала дискуссию по вакцинации: «почему некоторые родители предпочитают не прививать своих детей, несмотря на выгоды от этого?». Весомая часть вины лежит на дезинформации о химическом составе вакцин и эффектов, которые эти соединения могут иметь. Сейчас мы попробуем разобраться в компонентах  вакцина, а также разъясним их цели и безопасные концентрации.

Активные компоненты вакцин

Как правило, вакцины имеют несколько основных компонентов. Активный компонент, или его антиген, является важной частью, он отвечает за выведение иммунитета к болезни или инфекции, т.к. вакцина предназначена для защиты от нее. Антиген (активный компонент вакцины) состоит из модифицированной формы вируса, бактерии или токсина, который вызывает заболевание; точная природа может варьироваться в зависимости от вакцины.

Компоненты и химия вакцин

В некоторых вакцинах используют инактивированную форму вируса. Это достигается путем обработки вируса с помощью физических и химических методов. При этом их подвергают щадящей обработке (инактивации), которая приводит к необратимой утрате способности вируса размножаться (репродуцироваться), но при этом сохраняются его антигенные и иммуногенные свойства. Следовательно, в инактивированной вакцине должен быть «убит» вирусный геном (нуклеиновая кислота) и не должны подвергаться изменениям белки, гликопротеины, полисахариды вируса, так как иммунный ответ обусловлен главным образом веществами поверхности капсида вируса. В результате вирус утрачивает способность к репродукции и инфицированию, но сохраняет способность стимулировать специфические факторы иммунитета. Преимущество этого метода иммунизации является то, что его можно использовать людям с ослабленной иммунной системой.

С другой стороны, в некоторых случаях живые, но ослабленные вирусы также могут быть использованы для индукции иммунного ответа. Live-вирусные (живые) вакцины обеспечивают более длительный иммунитет, чем инактивированные, но они могут вызвать серьезные инфекции у людей с ослабленной иммунной системой.

Компоненты вакцин. То что Вас интересует.

Вспомогательные вещества в вакцинах

Вспомогательные вещества в вакцинах (адъюванты) представляют собой химические соединения, добавленные к вакцинам, чтобы помочь повысить иммунную реакцию организма. Они не присутствует во всех вакцинах – в живых вакцинах, таких как вакцины КПК, они не присутствуют. Их открытие было в значительной степени случайностью. Много лет назад, когда вакцины только начинали производиться, были отмечены различия в эффективности тех же вакцин в разных партиях. Теоретически это было связано со степенью чистоты вакцин; однако последующее соблюдение чистоты реакционных сосудов, в которых они производятся, привели к снижению общей эффективности вакцин. Как выяснилось, именно загрязнение в реакционных сосудах на самом деле помогло усилить эффект вакцины.

Последующие эксперименты подтвердили, что некоторые соединения, при добавлении к вакцинам в небольших количествах, усиливают иммунный ответ на вакцину. Было установлено, что алюминиевые соли дают заметный эффект, а их использование оправданно и на сегодняшний день в качестве эффективных основных вспомогательных веществ. Механизм, с помощью которого они усиливают иммунный ответ, еще до конца не изучен, но считается, что они помогают поддерживать активный компонент вакцины вблизи места инъекции, что делает его более легко доступным для иммунных клеток.

Вакцины интересные факты

web.kpi.kharkov.ua

Немного о вакцинах | LOL54.RU

Вакцины – это иммунобиологические препараты, изготовленные из живых аттенуированных или инактивированных микроорганизмов, токсинов, микробных антигенов и используемые для создания специфического активного искусственного иммунитета.

alt

Классификация по составу: 1. Корпускулярные (живые и инактивированные) 2. Растворимые (химические и анатоксины) 3. Генно-инженерные.

Классификация по назначению: 1. Профилактические 2. Лечебные (используются редко, при хронических заболеваниях).

alt

Поколения вакцин: 1. Первое поколение – корпускулярные, состоят из цельных микроорганизмов (живых или убитых) 2.Второе поколение – химические вакцины, которые состоят из фракций возбудителей или продуктов их метаболита. 3.Третье поколение – рекомбинантные вакцины, получаемые генно-инженерным способом.

alt

А) Живые вакцины получают путем снижения вирулентности микроорганизма при культивировании в неблагоприятных условиях или путем пассажей на маловосприимчивых животных, куриных эмбрионах и клеточных культурах. Преимущества: высокая иммуногенность, простота способа введения. Недостатки: длительный и трудный процесс получения, требует особых улсовий хранения, не исключена реверсия в вирулентный штамм.

Б) Инактивированные вакцины (убитые) – содержат микробные клетки или вирион. Для таких вакцин используют вирулентные мо, содержащие протективные аг, активность которых должна сохраниться при действии какой-либо обработки. Такие вакцины формируют менее напряженный иммунитет, обладают выраженной токсичностью. Преимущество!!!!!!! Такие вакцины НЕ СПОСОБНЫ вызвать инфекционное заболевание!!

alt

В) Химические вакцины – это субклеточные, субвирионные и молекулярные вакцины, которые содержат протективные антигенные комплексы мо. Так как это вакцины с высокой очисткой, то у них очень снижена иммуногенность в связи с чем к ним добавляют специальные вещества – адъюванты, которые ее повышают.

Г) Анатоксины – получают из бактериальных экзотоксинов путем 3-5 недельного воздействия на них 0,3-0,4% формалина при 37-40 градусах. Экзотоксин теряет свою ядовитость, однако остаются антигенные и иммуногенные свойства. Затем их очищают и адсорбируют на адъюванте – гидроксиде алюминия. Применяют для создания антитоксического иммунитета (дифтерия, столбняк, ботулизм).

Д) Генно-инженерные вакцины. Основной принцип получения: с помощью специальных ферментов из генома возбудителя вырезают гены, отвечающие за синтез протективных антигенов. Полученные гены встраивают в легкокультивируемые микроорганизмы ( E. coli). Изучают экспрессию этих генов и отбирают наиболее эффективные клоны микроорганизмов, продуцирующие протективные аг. Затем эти клоны размножают, накапливают аг, очищают препарат с помощью физических и химических методов в результате чего, образуется рекомбинантная вакцина, имеющая специфический протективные антиген.Иммунитет от таких вакцин кратковременен. Таким методом получена вакцина гепатита В, необходима постоянная ревакцинация.

****Протективные антигены — это совокупность антигенных детерминант (эпитопов), которые вызывают наиболее сильный иммунный ответ, что предохраняет организм от повторного инфицирования данным возбудителем.

lol54.ru

Вакцина - это... Что такое Вакцина?

Вакцина (от лат. vacca — корова) — медицинский или ветеринарный препарат, предназначенный для создания иммунитета к инфекционным болезням. Вакцина изготавливается из ослабленных или убитых микроорганизмов, продуктов их жизнедеятельности, или из их антигенов, полученных генно-инженерным или химическим путём[1].

История

Первая вакцина получила свое название от слова vaccinia (коровья оспа) — вирусная болезнь крупного рогатого скота. Английский врач Эдвард Дженнер впервые применил на мальчике Джеймсе Фиппсе вакцину против натуральной оспы, полученную из пузырьков на руке больного коровьей оспой, в 1796 г.[1] Лишь спустя почти 100 лет (1876—1881) Луи Пастер сформулировал главный принцип вакцинации — применение ослабленных препаратов микроорганизмов для формирования иммунитета против вирулентных штаммов.

Некоторые из живых вакцин были созданы советскими учеными, например, П.Ф. Здродовский создал вакцину против сыпного тифа в 1957—59 годах. Вакцину против гриппа создала группа ученых: А.А. Смородинцев, В.Д. Соловьев, В.М. Жданов в 1960 году. П.А. Вершилова в 1947—51 годах создала живую вакцину от бруцеллёза[1].

Общие сведения

Вакцинация стимулирует адаптивный иммунный ответ путем образования в организме специфических клеток памяти, поэтому последующая инфекция тем же агентом вызывает стойкий, более быстрый иммунный ответ. Для получения вакцин используют штаммы патогенов, убитые или ослабленные, их субклеточные фрагменты или анатоксины.

Выделяют моновакцины — вакцины, приготовленные из одного патогена, и поливакцины — вакцины, приготовленные из нескольких патогенов и позволяющие развить стойкость к нескольким болезням[1].

Классификация

Различают живые, корпускулярные (убитые), химические[1] и рекомбинантные.

Живые вакцины

Живые вакцины изготовляют на основе ослабленных штаммов микроорганизма со стойко закрепленной авирулентностью (безвредностью). Вакцинный штамм после введения размножается в организме привитого и вызывает вакцинальный инфекционный процесс. У большинства привитых вакцинальная инфекция протекает без выраженных клинических симптомов и приводит к формированию, как правило, стойкого иммунитета. Примером живых вакцин могут служить вакцины для профилактики краснухи, кори, полиомиелита, туберкулеза, паротита.

Корпускулярные вакцины

Корпускулярные вакцины содержат ослабленные или убитые компоненты вириона (вирионы). Для умерщвления обычно используют тепловую обработку или химические вещества (фенол, формалин, ацетон)[1].

Химические вакцины

Создаются из антигенных компонентов, извлеченных из микробной клетки. Выделяют те антигены, которые определяют иммуногенные характеристики микроорганизма.

Рекомбинантные вакцины

Для производства этих вакцин применяют методы генной инженерии, встраивая генетический материал микроорганизма в дрожжевые клетки, продуцирующие антиген. После культивирования дрожжей из них выделяют нужный антиген, очищают и готовят вакцину. Примером таких вакцин может служить вакцина против гепатита В, а также вакцина против вируса папилломы человека (ВПЧ)

См. также

Примечания

biograf.academic.ru