Убитые вакцины можно разбить на 2 большие группы- корпускулярные и молекулярные. Корпускулярные вакцины это


Живые вакцины

Они содержат ослабленный живой  микроорганизм. Примером могут служить  вакцины  против полиомиелита, кори, паротита, краснухи или туберкулеза. Могут быть получены путем селекции (БЦЖ, гриппозная). Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость. Утрата вирулентности у таких штаммов закреплена генетически, однако у лиц с иммунодефицитами могут возникнуть серьезные проблемы. Как правило, живые  вакцины  являются корпускулярными. Живые  вакцины  получают путем искусственного аттенуирования (ослабления штамма (BCG - 200-300 пассажей на желчном бульоне, ЖВС - пассаж на ткани почек зеленых мартышек) либо отбирая естественные авирулентные штаммы. В настоящее время возможен путь создания живых вакцин путем генной инженерии на уровне хромосом с использованием рестриктаз. Полученные штаммы будут обладать свойствами обеих возбудителей, хромосомы которых были взяты для синтеза. Анализируя свойства живых вакцин следует выделить, как положительные так и их отрицательные качества.

Положительные стороны: по механизму действия на организм напоминают "дикий" штамм, может приживляться в организме и длительно сохранять иммунитет (для коревой  вакцины  вакцинация в 12 мес. и ревакцинация в 6 лет), вытесняя "дикий" штамм. Используются небольшие дозы для вакцинации (обычно однократная) и поэтому вакцинацию легко проводить организационно. Последнее позволяет рекомендовать данный тип  вакцин  для дальнейшего использования.

Отрицательные стороны: живая  вакцина  корпускулярная - содержит 99% балласта и поэтому обычно достаточно реактогенная, кроме того, она способна вызывать мутации клеток организма (хромосомные аберрации), что особенно опасно в отношении половых клеток. Живые  вакцины  содержат вирусы-загрязнители (контаминанты), особенно это опасно в отношении обезьяннего СПИДа и онковирусов. К сожалению, живые  вакцины  трудно дозируются и поддаются биоконтролю, легко чувствительны к действию высоких температур и требуют неукоснительного соблюдения холодовой цепи. Хотя живые  вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых  вакцин вводится парентерально (за исключением полиомиелитной  вакцины).

На фоне преимуществ живых  вакцин  имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые  вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие  вакцины.

Примером живых  вакцин  могут служить  вакцины  для профилактики краснухи (Рудивакс), кори (Рувакс), полиомиелита (Полио Сэбин Веро), туберкулеза, паротита (Имовакс Орейон). Живые  вакцины  выпускаются в лиофилизированном виде (кроме полиомиелитной).

Ассоциированные вакцины

Вакцины различных типов, содержащие несколько компонентов (АКДС).

Корпускулярные вакцины

- представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, ультрафиолетовое облучение) воздействием. Примерами корпускулярных  вакцин  являются: коклюшная (как компонент АКДС и Тетракок), антирабическая, лептоспирозная, гриппозные цельновирионные, вакцины против энцефалита, против гепатита А (Аваксим), инактивированная полиовакцина (Имовакс Полио, или как компонент вакцины Тетракок).

studfiles.net

Вакцины корпускулярные - Справочник химика 21

    Процесс изготовления сухой корпускулярной брюшнотифозной вакцины состоит из нескольких стадий получение маточной [c.571]

    Вакцины - по праву занимают ведущее место в профилактике инфекционных заболеваний. Миллионы детей и взрослых ежегодно "прививают" во всем мире вакцинами из бактерий и вирусов. Вакцины давно подразделяют на корпускулярные и растворимые. К числу первых относят, как правило, вакцины из убитых или [c.479]

    Вакцины должны обладать специфической стерильностью вакцины независимо от того, являются ли они корпускулярными, химическими или живыми, состоящими из аттенуированных штаммов микробов или вирусов, не должны содержать посторонних агентов. [c.576]

    Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2—3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита. [c.186]

    Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация мик- [c.185]

    Контроль изготовленной вакцины проводят на стерильность, густоту микробной взвеси, иммуногенность и другие свойства. На примере отдельных вакцинных препаратов можно более подробно представить технологические этапы их приготовления. В качестве одного из примеров приготовления корпускулярной убитой и химической вакцины может быть приведена технология производства сухой спиртовой брюшнотифозной вакцины, обогащенной Ви-антигеном. [c.571]

    Вакцинами называются препараты, предназначенные для создания искусственного активного иммунитета. Некоторые вакцины применяют для лечения инфекционных заболеваний. Вакцины делят на живые и убитые, корпускулярные и химические. К вакцинным препаратам относятся также анатоксины. [c.123]

    Примером ассоциированной вакцины первого типа может служить секстаанатоксин против столбняка, газовой гангрены и ботулизма, второго типа — АКДС-вакцина, в которую входят столбнячный, дифтерийный анатоксины и коклюшная корпускулярная вакцина. В живую поливалентную ассоциированную полиоми-елитную вакцину входят живые вакцинные штаммы вируса полиомиелита I, II, III типов. [c.188]

    Риккетсиозные диагностические и профилактические препараты (корпускулярные и растворимые антигены, сыпнотифозная вакцина). [c.217]

    А сами клетки как источник целевого продукта. Например, выращенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины дрожжи — как кормовой белок или основу для получения гидролизатов питательных сред и т.д.  [c.91]

    Для одновременной иммунизации против ряда инфекций применяют поливалентные, или ассоциированные, вакцины. Они могут включать как однородные антигены (например, анатоксины), так и антигены различной природы (корпускулярные и молекулярные, живые и убитые). [c.188]

    К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединич-ные вакцины, а также молекулярные вакцины. [c.185]

    На примере отдельных вакцинных препаратов можно более подробно представить технологические этапы их приготовления. В качестве одного из примеров приготовления корпускулярной убитой и химической вакцины может быть приведена технология производства сухой спиртовой брюшнотифозной вакцины, обогащенной Ви-антигеиом. [c.571]

    Живые вакцины готовят из микроорганизмов, обладающих стойко сниженной вирулентностью, но сохранивших иммуноген-ные свойства. Убитые (температурой или действием химических веществ) корпускулярные вакцшы содержат инактивированные микроорганизмы. Химические вакцины готовят из антигенов, экстрагированных из бактериальных клеток химическими методами. Анатоксины готовят из экзотоксинов, обезвреженных формалином. [c.123]

    Специфическая профилактика и лечение. Для специфической профилактики используют живые и инактивированные вакцины из вирусов гриппа А (h2N1), А (h4N2) и В, культивируемых в куриных эмбрионах. Существует три типа инактивированных вакцин вирионные (корпускулярные) расщепленные, в которых структурные компоненты вириона разъединены с помощью детергентов субъединичные, содержащие только гемагглютинин и нейраминидазу. Вакцину из трех вирусов гриппа вводят интра-назально в одной прививочной дозе по специальной схеме. Вакцинация показана определенным контингентам, имеющим высокий риск заражения. [c.251]

chem21.info

31) Убитые (инактивированные) корпускулярные (цельноклеточные и цельновирионные) вакцины. Определение и способы инактивации. Приготовление. Преимущества и недостатки. Примеры.

Корпускулярные вакцины – препараты из инактивированных культур патогенных (высоко вирулентных) или вакцинных штаммов бактерий и вирусов.

Способы инактивирования:

1) физические: температура, УФ-лучи, ионизирующее излучение;

2) химические – формалин, спирт, ацетон, b-пропиолактон.

Корпускулярные вакцины из целых бактерий называют цельноклеточными, а из целых (неразрушенных) вирусов – цельновирионными.

Получение корпускулярных вакцин:

1) выращивают в асептических условиях чистую культуру микробов;

2) проводят инактивацию в оптимальном режиме (нужно лишить микроорганизмы жизнеспособности, но сохранить их иммуногенность), например, гретые вакцины инактивируют путем прогревания взвеси микробов при 56°С;

3) стандартизуют (по концентрации микробов), добавляют консервант (мертиолат, формальдегид, 2-феноксиэтанол и др.), который подавляет постороннюю микрофлору при хранении, фасуют;

Вакцины могут быть жидкие (суспензии) или сухие. Готовые вакцины подвергают контролю на стерильность, безвредность, иммуногенность, проверяют густоту вакцины или титр (количество микробов в 1 мл).

Преимущества цельноклеточных и цельновирионных вакцин:

1) простота получения;

2) большая устойчивость при хранении и более длительный срок хранения.

Недостатки цельноклеточных и цельновирионных вакцин:

1) менее прочный и продолжительный иммунитет;

2) необходимость 2-х и 3-х-кратных прививок парентеральным путем (подкожно, внутримышечно), иногда перорально;

3) реактогенность – боль, чувство жжения на месте введения, повышение температуры, судорожный синдром и т.д.

Корпускулярные вакцины из разрушенных бактерий и вирусов называются субклеточными и субвирионными. Такие вакцины содержат антигенные комплексы, выделенные из бактерий и вирусов после их разрушения.

преимущества субклеточных и субвирионных вакцин:

1) содержат только иммунологически активные части клеток – антигены без других компонентов;

2) менее реактогены;

3) более стабильны и лучше подвергаются стандартизации и более точной дозировке;

4) можно вводить в больших дозах и в виде ассоциированных препаратов.

Недостатки:

1) слабая иммуногенность;

2) малые размеры, что приводит к быстрому выведению и к краткому антигенному раздражению.

Примеры субклеточных и субвирионных вакцин: против брюшного тифа на основе О-, Н- и Vi –антигенов, против гриппа на основе антигенов вируса (нейраминидаза и гемагглтинин), против сибирской язвы на основе капсульного антигена, проив дизентерии, менингита, холеры.

 

32) Субкорпускулярные (химические, субъединичные) вакцины. Определение и получение. Преимущества и недостатки. Роль адъювантов. Примеры вакцин.

Корпускулярные вакцины из разрушенных бактерий и вирусов называются субклеточными и субвирионными. Такие вакцины содержат антигенные комплексы, выделенные из бактерий и вирусов после их разрушения.

Раньше эти вакцины назывались химическими. Однако этот термин более применим к вакцинам, полученным методам химического синтеза.

Получение субклеточных и субвирионных вакцин более сложное, чем цельноклеточных и цельновирионных (например, ферментативное переваривание с последующим осаждением антигенов этиловым спиртом), но они содержат меньше баластных веществ.

Преимущества субклеточных и субвирионных вакцин:

1) содержат только иммунологически активные части клеток – антигены без других компонентов;

2) менее реактогены;

3) более стабильны и лучше подвергаются стандартизации и более точной дозировке;

4) можно вводить в больших дозах и в виде ассоциированных препаратов.

Недостатки:

1) слабая иммуногенность;

2) малые размеры, что приводит к быстрому выведению и к краткому антигенному раздражению.

Для устранения недостатков к таким вакцинам добавляют адъванты. Адъванты усиливают иммуногеность вакцин. Они укрупняют антигенные частицы, создают в месте введения "депо", из которого антигены медленно высвобождаются, что удлиняет время их воздействия на иммунную систему. В качестве адъювантов используют минеральные коллоиды( фосфат алюминия, фосфат кальция, гидрат окиси алюминия, алюмо-калиевые квасцы), полимерные вещества (липополисахариды, синтетические полимеры), растительные вещества (сапонины) и др. Вакцины с адъювантами называются адъювантными, сорбированными, адсорбированными или депонированными вакцинами.

Примеры субклеточных и субвирионных вакцин: против брюшного тифа на основе О-, Н- и Vi –антигенов, против гриппа на основе антигенов вируса (нейраминидаза и гемагглтинин), против сибирской язвы на основе капсульного антигена, проив дизентерии, менингита, холеры.

studfiles.net

Убитые (корпускулярные) вакцины

 

Убитые вакцины представляют собой препараты, в которых основным действующим компонентом являются убитые мик­робные клетки возбудителя. Иногда такие вакцины называют «инактивированными», подразумевая, что они не живые (а не то, что они потеряли свою специфическую активность). Часто к названию таких вакцин добавляют «корпускулярные», по­скольку структурная единица вакдины представляет корпуску­лу — цельную микробную клетку или вирион. Если микробная клетка или вирион раздроблены на несколько крупных субъе­диниц, такие вакцины называют убитыми субъединичными вак­цинами.

Разработка убитых вакцин была вторым этапом констру­ирования вакцинных препаратов. К созданию вакцин этого типа обращались в тех случаях, когда не удавалось получить подходящего аттенуированного штамма, или он обладал вы­сокой остаточной вирулентностью. Поэтому проще было па­тогенный штамм убить и его биомассу использовать как вак­цину.

Для инактивации жизнеспособности микроорганизмов, ис­пользуемых в вакцине чаше всего применяют формальдегид, ацетон, спирт, глутаровый альдегид, а также используют нагре­вание.

Основным действующим началом убитых вакцин служат тоже протективные антигены, которые находятся в структуре микробных клеток или вирусов. Однако, в отличие от живых вакцин, они не воспроизводятся в организме, а поступают в не­го однократно или всего несколько раз (в зависимости от числа вакцинаций). Причем вакцины этого типа вводят, как правило, только парэнтерально: подкожно, внутрикожно, внутримы­шечно.

В силу такого неестественного пути и динамики поступле­ния антигенов в организм, формирующийся иммунный ответ и иммунологическая память значительно ниже, чем при вакци­нации живыми вакцинами.

Для усиления иммуногенности убитых вакцин часто ис­пользуют различные адъюванты — неспецифические иммуно­стимулирующие компоненты. Они помогают усиливать иммун­ный ответ и придают ему нужную направленность (клеточного или гуморального типа). Отсюда и возникло их название adju­vant — помогающий.

immun-system.blogspot.com

Убитые вакцины можно разбить на 2 большие группы- корпускулярные и молекулярные.

Количество просмотров публикации Убитые вакцины можно разбить на 2 большие группы- корпускулярные и молекулярные. - 156

Этот процесс состоит в размножении в организме вакцинального штамма и воздействии его на иммунокомпетентные клетки. Результатом этого является формирование специфического иммунитета к возбудителю данной инфекции.

Бактериальные вакцинные штаммы культивируют на жидких питательных средах или плотных искусственных питательных средах, вирусные – на куриных эмбрионах или культурах клеток. В качестве стабилизаторов используют человеческий альбумин, сахарозу. Вакцину контролируют на лабораторных животных по основным показателям :

содержанию живых бактерий или вирусов вакцинного штамма, остаточной влажности, безвредности, аллергенности, иммуногенности.

Убитые вакцины.

Убитые вакцины представляют из себявыращенную культуру бактерий или вирусов возбудителя, убитую каким- либо способом. Для инактивации культуры возбудителя используют физические (нагревание, УФИ, ионизирующая радиация), или химические

(формалин, спирт, фенол) методы. В результате инактивации бактерии и вирусы полностью теряют жизнеспособность, но сохраняют антигенные и иммуногенные свойства.

В корпускулярных вакцинах действующим началом являются или инактивированные цельные клетки бактерий и частицы вирусов (цельноклеточные, цельновирионные вакцины), или структурные элементы микробов , несущие специфические протективные АГ (субклеточные и субвирионные).

К цельноклеточным корпускулярным вакцинам относятся коклюшная,а к цельновирионным – вакцины против гриппа, бешенства, клещевого энцефалита͵ герпеса.

Для получения субклеточных и субвирионных вакцин из бактерий и вирусов извлекают протективные АГ, являющиеся белковыми комплексами. Выделœение из бактерий и вирусов протективных антигеных комплексов осуществляют различными физико- химическими методами: осаждением спиртами, высаливанием нейтральными солями, хроматографическими способами, ультрацентрифугированием. В связи с этим субклеточные вакцины раньше называли химическими.

В молекулярных вакцинах АГ находится в молекулярной форме. Антиген в молекулярном виде получают :

а. в процессе биосинтеза при выращивании природных, а также рекомбинированных штаммов бактерий и вирусов.

б. химическим синтезом .

Типичным примером молекулярных АГ, образуемых биосинтезом природными штаммами, являются анатоксины (столбнячный, дифтерийный, ботулинистический), получаемые из обезвреженных токсинов.

Анатоксины. Представляют собой обезвреженные токсины, синтезированные при культивировании бактерий на искусственных питательных средах. Токсин обезвреживают формальдегидом (0,4%) при 37-40 0 С в течение 4 недель. При таком режиме полностью утрачивается токсичность, сохраняется антигенность и иммуногенность токсинов. Обезвреженный токсин называют анатоксином.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, получены и нашли применение в практике анатоксины столбняка, ботулизма, газовой гангрены, стафилококковых инфекций. Анатоксины относятся к наиболее эффективным иммунобиологическим препаратам.

Адъювантами. Адъювантами (adjuvant - помощник) называют группу веществ, обладающих свойством повышать иммуногенность при добавлении к вакцинам, антигенам. К адъювантам относятся различные по природе физико- химическим свойствам вещества: гель гидрата окиси или фосфата алюминия, липиды, эмульгаторы, полимерные соединœения, вещества, вызывающие местную воспалительную реакцию (сапонин) и др. Размещено на реф.рфМеханизм действия адъювантов сводится к:

¨ созданию “депо” антигена в месте введения вакцин, благодаря чему пролонгируется действие АГ, и он длительно действует на иммунную систему.

¨ воспалительной реакции, активизирующей иммунокомпетентные клетки.

¨ активизации процесса захвата АГ и его переработки фагоцитирующими клетками.

Очищенные концентрированные, сорбированные на AI (OH) 3 анатоксины относятся к эффективным профилактическим препаратам и широко используются для иммунизации против дифтерии,столбняка, ботулизма, газовой гангрены, стафилококковых инфекций т.е профилактики токсинœемических инфекций.

Рекомбинантные вакцины.

Рекомбинантные вакцины- это препараты, поученные биосинтезом при культивировании рекомбинантных штаммов бактерий и вирусов- новейшее достижение генной инженерии и молекулярной иммунологии. Сегодня получены рекомбинантные штаммы кишечной палочки, вируса осповакцины, дрожжевых клеток. Имеются рекомби-нантные штаммы , продуцирующие АГ вирусов кори, полиомиелита͵ гриппа, бешенства, гепатитов А и В, ВИЧ, АГ бактерий бруцеллёза, туляремии, сифилиса, АГ простейших (малярийного плазмодия)при культивировании таких рекомбинантных штаммов- они в соответствии с заданной генетической программой синтезируют антиген возбудителœей, которые выделяют из культуральной жидкости и на их базе конструируют молекулярные вакцины . Для иммунопрофилактики применяется генноинженерная молекулярная вакцина против гепатита В, для её получения используют рекомбинантный штамм дрожжей со встроенным в него геномом НВS – АГ вируса гепатита В.

Вакцины, полученные методом химического синтеза.

Методом химического синтеза, можно получить вакцины, только в том, случае, когда расшифрована химическая структура природного специфического протективного АГ. Такие вакцины получены против гриппа, чумы, туляремии. Методом химического синтеза получены АГ ВИЧ, которые используются в диагностической системе “Рекомбинант ВИЧ”.

Ассоциированные вакцины.

Организм способен формировать полноценный иммунитет при одновременном введении нескольких АГ. Это послужило основанием для создания единых комплексных, так называемых ассоциированных вакцин для одновременной иммунизации против нескольких инфекций. Οʜᴎ широко применяются в практике для иммунизации против коклюша, дифтерии и столбняка(АКДС- адсорбированная на гидроокиси алюминия убитая корпускулярная коклюшная вакцина в ассоциации с дифтерийным и столбнячным анатоксином ), против столбняка, газовой гангрены и ботулизма(секстаанатоксин, представляющий, сорбированный на гидроокиси алюминия столбнячный, ботулинистические А, В,Е и гангренозные перфрингенс и нови- анатоксины), против полиомиелита(живая вакцина, составленная из 3 аттенуированных штаммов вируса 1,2, 3 типов). Применяется живая ассоциированная вакцина против кори, паротита͵ краснухи.

referatwork.ru

Убитые вакцины можно разбить на 2 большие группы- корпускулярные и молекулярные.

В корпускулярных вакцинах действующим началом являются или инактивированные цельные клетки бактерий и частицы вирусов (цельноклеточные, цельновирионные вакцины), или структурные элементы микробов , несущие специфические протективные АГ (субклеточные и субвирионные).

К цельноклеточным корпускулярным вакцинам относятся коклюшная,а к цельновирионным – вакцины против гриппа, бешенства, клещевого энцефалита, герпеса.

Для получения субклеточных и субвирионных вакцин из бактерий и вирусов извлекают протективные АГ, являющиеся белковыми комплексами. Выделение из бактерий и вирусов протективных антигеных комплексов осуществляют различными физико- химическими методами: осаждением спиртами, высаливанием нейтральными солями, хроматографическими способами, ультрацентрифугированием. В связи с этим субклеточные вакцины раньше называли химическими.

В молекулярных вакцинах АГ находится в молекулярной форме. Антиген в молекулярном виде получают :

а. в процессе биосинтеза при выращивании природных, а также рекомбинированных штаммов бактерий и вирусов.

б. химическим синтезом .

Типичным примером молекулярных АГ, образуемых биосинтезом природными штаммами, являются анатоксины (столбнячный, дифтерийный, ботулинистический), получаемые из обезвреженных токсинов.

Анатоксины. Представляют собой обезвреженные токсины, синтезированные при культивировании бактерий на искусственных питательных средах. Токсин обезвреживают формальдегидом (0,4%) при 37-40 0 С в течение 4 недель. При таком режиме полностью утрачивается токсичность, сохраняется антигенность и иммуногенность токсинов. Обезвреженный токсин называют анатоксином.

Таким образом, получены и нашли применение в практике анатоксины столбняка, ботулизма, газовой гангрены, стафилококковых инфекций. Анатоксины относятся к наиболее эффективным иммунобиологическим препаратам.

Адъювантами. Адъювантами (adjuvant - помощник) называют группу веществ, обладающих свойством повышать иммуногенность при добавлении к вакцинам, антигенам. К адъювантам относятся различные по природе физико- химическим свойствам вещества: гель гидрата окиси или фосфата алюминия, липиды, эмульгаторы, полимерные соединения, вещества, вызывающие местную воспалительную реакцию (сапонин) и др. Механизм действия адъювантов сводится к:

¨ созданию “депо” антигена в месте введения вакцин, в результате чего пролонгируется действие АГ, и он длительно действует на иммунную систему.

¨ воспалительной реакции, активизирующей иммунокомпетентные клетки.

¨ активизации процесса захвата АГ и его переработки фагоцитирующими клетками.

Очищенные концентрированные, сорбированные на AI (OH) 3 анатоксины относятся к эффективным профилактическим препаратам и широко используются для иммунизации против дифтерии,столбняка, ботулизма, газовой гангрены, стафилококковых инфекций т.е профилактики токсинемических инфекций.

 

Рекомбинантные вакцины.

Рекомбинантные вакцины- это препараты, поученные биосинтезом при культивировании рекомбинантных штаммов бактерий и вирусов- новейшее достижение генной инженерии и молекулярной иммунологии. В настоящее время получены рекомбинантные штаммы кишечной палочки, вируса осповакцины, дрожжевых клеток. Имеются рекомби-нантные штаммы , продуцирующие АГ вирусов кори, полиомиелита, гриппа, бешенства, гепатитов А и В, ВИЧ, АГ бактерий бруцеллёза, туляремии, сифилиса, АГ простейших (малярийного плазмодия)при культивировании таких рекомбинантных штаммов- они в соответствии с заданной генетической программой синтезируют антиген возбудителей, которые выделяют из культуральной жидкости и на их основе конструируют молекулярные вакцины . Для иммунопрофилактики применяется генноинженерная молекулярная вакцина против гепатита В, для её получения используют рекомбинантный штамм дрожжей со встроенным в него геномом НВS – АГ вируса гепатита В.

Похожие статьи:

poznayka.org