Вакцины и вакцинация. Ассоциированная вакцина это


пл 2 семестру / ВАКЦИНЫ

ВАКЦИНЫ.

Вакцинами, по предложению Л. Пастера, названы все прививочные препараты, получаемые из микроорганизмов, их антигенов и токсинов, которые применяются для активной иммунизации людей и животных с профилактическими и лечебными целями.

Вакцины готовят из специально отобранных штаммов микроорга-1 низмов, которые называют вакцинными. Эти штаммы прежде всего должны обладать полноценными иммуногенными свойствами и обеспе­чивать образование достаточного количества антител в организме i человека.

Большинство вакцин выпускается в форме лиофилизированных препаратов, т. е. высушенных из замороженного состояния в глубоком вакууме. Это обеспечивает их длительное сохранение без потери биологической активности.

Каждая серия получаемой вакцины в производственных условиях подвергается тщательному контролю согласно регламенту, прежде всего на стерильность, иммуногенность и реактогенность.

Живые вакцины.

Вакцины этого типа приготавливают из специально полученных вакцинных штаммов микроорганизмов с резко ослабленной вирулентностью и хорошо сохранившимися иммуногенны-ми свойствами.

В отличие от убитых живые вакцины создают более напряженный иммунитет, так как по существу они воспроизводят легко протекаю­щий, не всетда уловимый инспекционный процесс, при котором функционируют все те же механизмы, которые участвуют в формирова­нии посгинфекционною иммунитета. При этом напряженность поства-кцинального иммунитета зависит как от качества живой вакцины, так и 01 реактивности иммунной системы организма.

Убитые вакцины.

Данный тип вакцин представляет собой суспензию убитых микроорганизмов в растворе натрия хлорида. Их готовят из соогветствуютих видов микробов, обладающих максимально выра­женными иммуногенными свойствами. Ипактивация вакцины прово­дится разными методами — высокой температурой, УФ-лучами, ультразвуком, химическими веществами (формалин, фенол, спирт и др.) — в условиях, исключающих денатурацию антигенов бактери­альной клетки или вирусной частицы.

К убитым вакцинам относятся вакцины против брюшного тифа и паратифов, холеры, коклюша, гриппа, клещевого энцефалита и др.

Химические вакцины.

Их готовят из отдельных антигенных компонентов микробной клетки, которая, как уже отмечалось, содержит большое количество различных антигенов. Однако не все они в одинаковой степени способствуют формированию иммунитета.

Однако при введении подобных антшенов в организм они быстро рассасываются и не обеспечивают необходимого длительного иммуногенного раздражения. Поэтому к ним добавляют различные адъюванты (adjuvans - помогающий, ппддерживаюший). В качестве адъювантов применяют гидрат окиси алюминия, алюминиево-калиевые квасцы, кальция хлорид, минеральные я животные масла и др.

Наиболее широко используются химические вакцины, полученные из брюшнотифозных и паратифозных бактерий, бацилл сибирской язвы.

Анатоксины.

Иммунитет при ряде заболеваний (дифтерия, столбняк, ботулизм и др.) носит преимущественно антитоксический характер. Поэтому для профилактики данных заболеваний вызывают образование не антимикробного, а антитоксическою иммунитета. Анатоксины очищают от балластных белков питательной среды и адсорбируют на депонирующих веществах (гидрат окиси алюминия, фосфат алюминия и др.). В настоящее время выпускают столбнячный, дифтерийный, ботулинический и другие анатоксины. По количеству содержащихся в вакцине антигенов различают моновакцины, приготовленные из одного возбудителя или антиге­на, дивакцины содержат два антигена, тривакцины — три антигена и т. д. Вакцины, содержащие антигены против нескольких инфекций, называются поливакцинами.

Ассоциированные вакцины готовят из антигенов различных бактерий и анатоксинов. Например, дифтерийно-коклюшная вакцина содержит дифтерийный анатоксин и убитые бактерии коклюша. В ассоциированную коклюшно-дифтерийно-столбнячную вакцину (АКДС) добавляют столбнячный анатоксин. Ассоциированная тифо-паратифозная вакцина содержит О-антигены бактерий брюшного тифа и паратифов и столбнячный анатоксин.

Аутовакцина— особый вид вакцин. Ее готовят из микробов, выделенных от больного, и используют для лечения только дан­ного больного. Чаще всего аутовакцины применяются для лечения хронических инфекций, вызванных стафилококками и другими бактериями.

Принципы применения вакцин. Напряженность иммунитета при вакцинации взрослых и детей зависит от состояния иммунной системы организма, а также места, кратности и интервалов введения вакцин. Вакцинацию проводят различными путями: накожно, внутрикожно, подкожно, энтерально, на слизистую оболочку носа, аэрогенно и комбинированными методами. Безболезненным методом введения, который наиболее предпочтителен при иммунизации детей, является энтеральный способ. Широко используют в последнее время безыгольный внутрикожный метод введения вакцин, который совершенно безболезнен.

Живые вакцины вводят чаще однократно (вакцина против паротита, полиомиелита и др.) или с последующей ревакцинацией (вакцины БЦЖ, против кори и др.). При употреблении некоторых видов вакцин даже с созданием депо однократное введение антигена не обеспечивает напряженного иммунитета, поэтому проводят ревакцинацию через определенные интервалы. Дозы антигена, условия и правила хранения вакцин указаны в специальных инструкциях, прилагаемых ко всем бакте­рийным препаратам.

В связи с тем что искусственный иммунитет после вакцинации сохраняется сравнительно недолго, прививки против одного и того же заболевания проводят неоднократно.

Вакцины применяют главным образом для профилактики инфекционных заболеваний: некоторые из них (вакцины против полиомиелита, АКДС и др.)— в обязательном порядке, другие — только по эпидемическим показаниям среди ограниченных групп населения, которым угрожает опасность заражения (вакцина против клещевого энцефалита, туляремии и т. д.).

Для лечебных целей (вакцинотерапия) вакцины используют при хронических, вяло протекающих заболеваниях: фурункулез и другие стафилококковые инфекции, хроническая гонорея, бруцеллез и др. В этих случаях применяют стафилококковую аутовакцину, стафилококковый анатоксин, гонококковую, бруцеллезную убитые вакцины. Их лечебный эффект связан со стимуляцией иммунной системы и десенсибилизацией организма.

Иммунные сыворотки и иммуноглобулины

Введение специфических, антител в начальной стадии заболевания (серотерапия) или при непосредственной угрозе заражения (серопрофилактика) облегчает течение болезни в первом случае или предупреждает ее возникновение во втором.

Иммунные сыворотки, содержащие специфические антитела, получают путем многократной иммунизации (гипериммунизации) лошадей или других животных, у которых можно взять сравнительно большое количество крови. Кроме того, сыворотка крови лошадей менее токсична для человека, чем сыворотка других животных. Из крови получают сыворотку, которую консервируют, проверяют на стерильность, безвредность, количество белка, прозрачность. Приготовленные таким методом нативные лечебные сыворотки содержат балластные белки, которые при введении человеку могут вызвать довольно тяжелые реакции (повышение температуры тела, боли) и сенсибилизацию организма. Для устранения этих осложнений разработаны методы концентрации сывороток и их очистки от альбуминов и других балластных белков путем осаждения аммония сульфатом, электрофорезом, ферментативным гидролизом, спирто-водными осадителями при низкой температуре и т. д.

Антитоксические сыворотки выпускают с определенным содержанием антитоксинов, измеряемым в международных единицах (ME). Они обладают способностью нейтрализовать циркулирующие в организме токсины бактерий (например, возбудителей дифтерии, столбняка, анаэробной инфекции, ботулизма). Чем раньше от момента заражения вводят сыворотку, тем эффективнее ее действие. При запоздалом введении сыворотки, когда токсин соединился с клетками и вызвал в них необратимые изменения, лечебный эффект проявляется в меньшей степени или отсутствует.

Сыворотку в организм человека вводят разными путями. Наиболее распространены внутримышечный и внутривенный способы введения. Дозы сыворотки определяют в зависимости от сроков ее введения от начала заболевания, состояния больного и клинического течения инфекционного заболевания.

В настоящее время нативные антимикробные сыворотки используют для получения иммуноглобулинов. Иммуноглобулины приготовляют из сыворотки крови доноров, не иммунизированных или иммунизированных против различных болезней (гомологичные иммуноглобулины), а также из сыворотки гипериммунизированных животных (гетерологичные иммуноглобулины) методом водно-спиртового осаждения 7-глобулиновой фракции на холоду.

Иммуноглобулины широко применяются для профилактики и лечения коклюша, скарлатины, кори, гриппа, вирусного гепатита и других инфекций у взрослых и детей. С этими же целями используют сывороточный полиглобулин (СПГ), содержащий смесь иммуноглобулинов к различным антигенам. Вводят иммуноглобулины в организм в небольших дозах (1—2 мл). Все иммуноглобулины, так же как нативные сыворотки, обладают аллергизирующим свойством, хотя оно выражено у них в меньшей степени.

studfiles.net

: Иммунохимия :: Иммунобиологические препараты :: Вакцины

Вакцины – это препараты, способные создать активный иммунитет против заболевания, получаемые из цельных микроорганизмов, их отдельных компонентов или продуктов жизнедеятельности. Вакцины используются для активной иммунизации человека и животных.

Вакцины можно разделить на следующие типы:

Живые вакцины – это препараты, содержащие жизнеспособные штаммы патогенных микроорганизмов, способные размножаться в организме, но ослабленные (аттенуированные) до степени, исключающей возникновение заболевания, с сохранением высокой иммуногенной активности. При введении в организм живые вакцины вызывают так называемый вакцинальный процесс, который заключается в размножении вакцинного штамма и его воздействии на иммунокомпетентные клетки. Результатом является формирование специфического иммунитета к возбудителю данной инфекционной болезни.

Примеры: вакцины против полиомиелита, туберкулеза, кори, паротита, краснухи, сибирской язвы, туляремии, гриппа, чумы.

Преимущества живых вакцин:

  1. высокая напряженность и длительность иммунитета;
  2. однократная иммунизация;
  3. использование небольших доз;
Недостатки:
  1. вакцины достаточно реактогенны, так как содержат до 99% балласта;
  2. противопоказаны при различных иммунодефицитах;
  3. сохраняется возможность обратных мутаций с приобретением вирулентных свойств;
  4. требуют специальных условий хранения.
Принципы получения живых вакцин.

Аттенуация – снижение вирулентных свойств возбудителя инфекции, достигается путем создания условий, неблагоприятных для размножения и развития микроорганизма, но не вызывающих его гибель. Для этого могут использоваться следующие способы.

  • Культивирование микроорганизмов при неблагоприятных температурных условиях. Именно таким путем Л. Пастер получил в 1881 г. противосибироязвенную вакцину. Он культивировал сибироязвенный микроб на жидкой питательной среде при 42,5 – 43оС. В этих условиях бациллы сибирской язвы не образуют спор и постепенно теряют вирулентность.
  • Культивирование микроорганизмов при добавлении вредных веществ. Этим методом в 1924 г. французскими учеными А. Кальметтом и С. Гереном была получена противотуберкулезная вакцина. В течение 13 лет они культивировали микобактерии туберкулеза бычьего типа на картофельной среде с добавлением бычьей желчи и 5 %-го раствора глицерина. Непрерывное неблагоприятное действие желчи привело к ослаблению вирулентных свойств туберкулезной палочки.
  • Облучение ультрафиолетовыми лучами. Примером может служить сухая живая вакцина против листериоза. В 1965 г. А. В. Селивановым с соавторами из мозга больной овцы был выделен возбудитель листериоза. Путем сочетания облучений УФ-лучами и направленной селекции был получен аттенуированный штамм бактерии.
  • Многократные пассажи возбудителя через организм невосприимчивых или маловосприимчивых к этой болезни животных. Для этой цели часто применяют кроликов, которых впервые использовал Л. Пастер для аттенуации возбудителя рожи свиней.
Живые вакцины могут быть получены путем отбора авирулентных штаммов, которые возникают в естественных условиях под влиянием неблагоприятных факторов или в лаборатории путем селекции и длительного выращивания.

Для получения инактивированных вакцин на биофабриках высевают производственный вакцинный штамм на жидкую питательную среду и культивируют для наработки достаточного количества микробной массы. Полученную микробную массу затем подвергают воздействию физико-химических факторов.

Для повышения иммуногенной эффективности живых и инактивированных вакцин применяют адъюванты. Такие вакцины называются депонированными. Механизм действия адъювантов состоит в том, что в месте введения они вызывают воспалительную реакцию. Поступление антигена из очага воспаления происходит медленно, что приводит к увеличению продолжительности его иммуностимулирующего действия.

Химические вакцины состоят из антигенов, полученных из микроорганизмов преимущественно химическими способами. Они обладают слабой реактогенностью, могут вводиться в больших дозах и многократно. Химические вакцины отличаются неограниченными возможностями для приготовления ассоциированных вакцин и возможностью длительного хранения в небольших объемах. К химическим относятся вакцины против холеры и брюшного тифа.

Поливалентные вакцины – биопрепараты, приготовленные из различных серологических типов данного вида микроорганизмов. В медицине применяется поливалентная вакцина против полиомиелита – живая вакцина, составленная из 3 аттенуированных штаммов вируса. Для вакцинации животных используются поливалентные вакцины против ящура, африканской сонной болезни лошадей и др.

Ассоциированные (смешанные) вакцины – это биопрепараты приготовленные в отличие от поливалентных вакцин из микробных культур нескольких возбудителей инфекционных болезней. Ассоциированные вакцины используют для одновременной иммунизации против нескольких инфекций. Так, широко применяемая в практике вакцина АКДС, представляющая собой убитую коклюшную вакцину в ассоциации с дифтерийным и столбнячным анатоксином, позволяет осуществлять одновременную профилактику против коклюша, дифтерии и столбняка. Секстаанатоксин, содержащий сорбированные на гидроксиде алюминия столбнячный, ботулинические и гангренозные анатоксины, используют для иммунизации против столбняка, ботулизма и газовой гангрены. Находит применение живая ассоциированная вакцина против кори, паротита и краснухи.

Рекомбинантные вакцины – препараты, полученные при культивировании рекомбинантных штаммов бактерий и вирусов, – новейшее достижение генной инженерии и молекулярной иммунологии. В настоящее время получены рекомбинантные штаммы дрожжевых клеток, кишечной палочки, вируса осповакцины, в геном которых встроены гены патогенных микробов, в результате чего они приобретают способность продуцировать их антигены. При культивировании таких рекомбинантных штаммов они, в соответствии с заданной генетической программой, синтезируют антигены возбудителей, которые затем выделяют из культуральной жидкости и на их основе конструируют молекулярные вакцины.

Имеются рекомбинантные штаммы кишечной палочки и дрожжей, продуцирующие антигены вирусов гепатитов А и В, кори, гриппа, полиомиелита, бешенства, антигены бактерий бруцеллеза, туляремии, сифилиса. На рис. 28 показана принципиальная схема получения вакцины Энджерикс/вакцины против гепатита В.

media.ls.urfu.ru

Вакцины и вакцинация | Иммунинфо

      Для профилактики инфекционных заболеваний применяются методы активной и пасивной иммунизации. Научные основы иммунопрофилактики заложены исследованиями Пастера, открывшего феномен аттенуации (ослабления) микробов и создавшего вакцины против сибирской язвы и бешенства.

       Активная иммунизация Активная иммунизация имеет цель создание стойкого и длительного иммунитета к инфекциям с тяжелым течением и плохо поддающихся лечению. Для активной иммунизации применяют вакцинные препараты.

      Вакцинация признана ВОЗ идеальным методом профилактики инфекционных заболеваний человека. Высокая эффективность, простота, возможность широкого охвата вакцинируемых лиц с целью массового предупреждения заболевания вывели активную иммунопрофилактику в нашей стране в разряд государственных приоритетов.

      В практике используют: живые вакцины, убитые вакцины, генно-инженерные вакцины (анатоксины), моно- и ассоциированные вакцины.

       Живые вакцины

      Живые вакцины готовят из аттенуированных либо генетически измененных патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду (дивергентные вакцины). Основным достоинством живых вакцин является полное сохранение антигенного спектра возбудителя, что обеспечивает создание полноценного и напряженного иммунитета. Вместе с тем, при использовании живых вакцин может наблюдаться развитие манифестной инфекции в результате снижения аттенуации вакцинного штамма. Подобные явления наиболее характерны для противовирусных вакцин (например, живой полиомиелитной вакцины, которая в редких случаях способна вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича). Из живых вакцин наиболее известны вакцины для профилактики сибирской язвы, бруцеллеза, брюшного тифа, желтой лихорадки, противополиомиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита. Из живых дивергентных вакцин широко используется БЦЖ-вакцина (содержащая микобактерии бычьего туберкулеза) и вакцина против натуральной оспы (содержащая вирус коровьей оспы).

       Убитые(инактивированные) вакцины

      Препараты готовят из убитых микробных тел либо их метаболитов, а также из отдельных антигенов, полученных биосинтетическим или химическим путем. Неживые вакцины обычно проявляют меньшую иммуногенность, чем живые вакцины, что определяет необходимость их многократного введения. Неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, наблюдаемых после иммунизации живыми вакцинами.

      Для приготовления убитых вакцин вирулентные микроорганизмы убивают либо термической обработкой, либо воздействием химических агентов (например, формалина или ацетона). В приготовлении субъединичных вакцин используют главные (мажорные) антигены возбудителя, выделенные с помощью физико-химических методов.

      Среди убитых вакцин наибольшее распространение получили противочумная вакцина и антирабическая вакцина, а также вакцины (субъединичные) против пневмококков на основе полисахаридных капсул, против брюшного тифа (О-, Н- и Vi-Аг), сибирской язвы (полисахариды и полипептиды капсул), гриппа, на основе вирусной нейраминидазы и гемагглютининов.

       Генно-инженерные вакцины Эти вакцины содержат антигены возбудителей, полученные методом генной инженерии. Используют следующие приемы создания этого типа вакцин:

    — внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы;

    — внесение генов вирулентности в неродственные микроорганизмы с последующим выделением антигенов и их использованием в качестве иммуногена;

    — искусственное удаление генов вирулентности и использование модифицированных микроорганизмов в виде корпускулярных вакцин.

      Ряд современных противовирусных вакцин сконструированы путем введения генов, кодирующих основные антигены патогенных вирусов и бактерий в геном вируса осповакцины (HbsAg вируса гепатита В и АГ токсина столбнячной палочки). Другим примером служит введение генов возбудителя туберкулеза в вакцинный штамм БЦЖ, что придает ему большую активность в качестве дивергентной вакцины. В качестве метода более быстрой и дешевой наработки бактериальных экзотоксинов в настоящее время разработаны методы их получения при помощи неприхотливых микроорганизмов, в геном которых искусственно внесены гены токсинообразования (например, в виде плазмид).

       Синтетические вакцины

       Получают путем синтеза или выделения нуклеиновых кислот или полипептидных последовательностей, образующих антигенные детерминанты, индуцирующих иммунный ответ. Обязательными компонентами таких вакцин являются антиген, высокомолекулярный носитель (винилпирролидон или декстран) и адъювант (гидрооксид алюмия). Подобные препараты наиболее безопасны в плане возможных поствакцинальных осложнений. Перспективным представляется создание вакцин на основе нуклеиновых кислот для профилактики инфекций, вызываемых внутриклеточными паразитами. В эксперименте установлено, что иммунизация молекулами РНК или ДНК ряда вирусов, малярийного плазмодия, возбудителя туберкулеза приводит к формированию напряженного иммунитета.

       Молекулярные вакцины (анатоксины)

       В препаратах иммуногенами выступают молекулы токсинов (чаще экзотоксинов). Токсины получают путем промышленного культивирования естественных штаммов-продуцентов (например, возбудителя дифтерии, ботулизма, столбняка). Затем токсины инактивируют термической обработкой либо формалином, в результате чего образуются анатоксины (токсоиды), молекулы, лишенные токсических свойств, но сохранившие иммуногенность. Анатоксины очищают, концентрируют и для усиления иммуногенных свойств адсорбируют на адъюванте (обычно, гидроксиде алюминия). Промышленностью выпускаются дифтерийный, столбнячный, ботулинический, стафилококковый анатоксины.В некоторых случаях для иммунизации применяют конъюгированные вакцины, представляющие собой комплексы бактериальных полисахаридов и токсинов. Часто такое сочетание способствует усилению иммуногенности каждого из компонентов вакцины.

       Моно- и ассоциированные вакцины

       Моновалентные препараты содержат иммуногены, индуцирующие невосприимчивость организма к одному возбудителю (противостолбнячный анатоксин, вакцина против кори, краснухи, туберкулеза). Ассоциированные (поливалентные) препараты содержат иммуногены нескольких микроорганизмов. Среди поливалентных вакцин наиболее известны адсорбированная коклюшно-дифтерийно-столбнячная вакцина (АКДС-вакцина), тетравакцина (вакцина против брюшного тифа, паратифов А и В, столбнячный анатоксин) и АДС-вакцина (дифтерийно-столбнячный анатоксин).

      Вакцинные препараты вводят внутрь, подкожно, внутрикожно, парентерально, интраназально и ингаляционно. Способ введения определяется свойствами препарата. По степени необходимости выделяют плановую (обязательную) вакцинацию и вакцинацию по эпидемиологическим показаниям. Первую проводят в соответствии с календарем иммунопрофилактики наиболее распространенных и опасных инфекций. Вакцинацию по эпидемиологическим показаниям проводят для срочного создания иммунитета у лиц, подвергающихся риску развития инфекции. Например, при вспышке инфекционного заболевания в населенном пункте или предполагаемой поездке в эндемичные районы (желтая лихорадка, гепатит А).

immuninfo.ru